Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Open Access
Online
ISSN
2300-1909
See all formats and pricing
More options …

Experimental and Thermodynamic Study of Selected in-Situ Composites from the Fe-Cr-Ni-Mo-C System

K. Wieczerzak
  • Corresponding author
  • AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF METALS ENGINEERING AND INDUSTRIAL COMPUTER SCIENCE, AL. A. MICKIEWICZA 30, 30-059 KRAKOW, POLAND
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. Bala
  • AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF METALS ENGINEERING AND INDUSTRIAL COMPUTER SCIENCE, AL. A. MICKIEWICZA 30, 30-059 KRAKOW, POLAND
  • AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, ACADEMIC CENTRE FOR MATERIALS AND NANOTECHNOLOGY, AL. A. MICKIEWICZA 30, 30-059 KRAKOW, POLAND
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. Dziurka
  • AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF METALS ENGINEERING AND INDUSTRIAL COMPUTER SCIENCE, AL. A. MICKIEWICZA 30, 30-059 KRAKOW, POLAND
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Stepien
  • AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, ACADEMIC CENTRE FOR MATERIALS AND NANOTECHNOLOGY, AL. A. MICKIEWICZA 30, 30-059 KRAKOW, POLAND
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ T. Tokarski
  • AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, ACADEMIC CENTRE FOR MATERIALS AND NANOTECHNOLOGY, AL. A. MICKIEWICZA 30, 30-059 KRAKOW, POLAND
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G. Cios
  • AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, ACADEMIC CENTRE FOR MATERIALS AND NANOTECHNOLOGY, AL. A. MICKIEWICZA 30, 30-059 KRAKOW, POLAND
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ K. Gorecki
  • AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF METALS ENGINEERING AND INDUSTRIAL COMPUTER SCIENCE, AL. A. MICKIEWICZA 30, 30-059 KRAKOW, POLAND
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-07-01 | DOI: https://doi.org/10.1515/amm-2016-0205

Abstract

The aim of the study was to synthesize and characterize the selected in-situ composites from the Fe-Cr-Ni-Mo-C system, additionally strengthened by intermetallic compounds. The project of the alloys was supported by thermodynamic simulations using Calculation of Phase Diagram approach via Thermo-Calc. Selected alloys were synthesized in an arc furnace in a high purity argon atmosphere using a suction casting unit. The studies involved a range of experimental techniques to characterize the alloys in the as-cast state, including optical emission spectrometry, light microscopy, scanning electron microscopy, electron microprobe analysis, X-ray diffraction and microhardness tests. These experimental studies were compared with the Thermo-Calc data and high resolution dilatometry. The results of investigations presented in this paper showed that there is a possibility to introduce intermetallic compounds, such as χ and σ, through modification of the chemical composition of the alloy with respect to Nieq and Creq. It was found that the place of intermetallic compounds precipitation strongly depends on matrix nature. Results presented in this paper may be successfully used to build a systematic knowledge about the group of alloys with a high volume fraction of complex carbides, and high physicochemical properties, additionally strengthened by intermetallic compounds.

Keywords: Fe-Cr-Ni-Mo-C; in-situ composites; intermetallic compounds; dilatometry; microstructure

References

  • [1] S. Tjong, Mater. Sci. Eng. R Reports. 29, 49-113 (2000).CrossrefGoogle Scholar

  • [2] A.I. Filho, W. da S. Cardoso, L.C. Gontijo, R.V. da Silva, L.C. Casteletti, Metall. Mater. 66, 467-471 (2013).Google Scholar

  • [3] J.O. Nilsson, A. Wilson, Mater. Sci. Technol. 9, 545-554 (1993).CrossrefGoogle Scholar

  • [4] M. Pohl, O. Storz, T. Glogowski, Mater. Charact. 58, 65-71 (2007).Google Scholar

  • [5] K. Chan, S. Tjong, Materials (Basel). 7, 5268-5304 (2014).Google Scholar

  • [6] G. Fargas, M. Anglada, A. Mateo, J. Mater. Process. Technol. 209, 1770-1782 (2009).Google Scholar

  • [7] S.-H. Kim, H. Kim, N. J. Kim, Nature. 518, 77-79 (2015).Google Scholar

  • [8] K. Suganuma, H. Kayano, S. Yajima, J. Mater. Sci. 16, 3131-3140 (1981).CrossrefGoogle Scholar

  • [9] X.-C. Lu, S. Li, X. Jiang, Wear. 251, 1234-1238 (2001).Google Scholar

  • [10] Y.Q. Wang, J. Han, H.C. Wu, B. Yang, X.T. Wang, Nucl. Eng. Des. 259, 1-7 (2013).Google Scholar

  • [11] G. Fargas, A. Mestra, A. Mateo, Wear. 303, 584-590 (2013).Google Scholar

  • [12] T. Koziel, Arch. Metall. Mater. 60, 765-771 (2015).Google Scholar

  • [13] A.L. Shaeffler, Met. Prog. 56, 680 (1949).Google Scholar

  • [14] J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, B. Sundman, Calphad. 26, 273-312 (2002).CrossrefGoogle Scholar

  • [15] K. Wieczerzak, P. Bala, M. Stepien, G. Cios, T. Koziel, JMADE. 94, 61-68 (2016).Google Scholar

  • [16] K. Wieczerzak, P. Bała, M. Stępień, G. Cios, T. Kozieł, Arch. Metall. Mater. 60, 769-782 (2015).Google Scholar

  • [17] H.J. Goldschmidt, Interstitial alloys, 1967 Springer Science+Business Media, LLC, New York.Google Scholar

  • [18] M. Palcut, M. Vach, R. Cicka, J. Janovec, Arch. Metall. Mater. 53, 1157-1164 (2008).Google Scholar

  • [19] C.P. Tabrett, I.R. Sare, M.R. Ghomashchi, Int. Mater. Rev. 41, 59-82 (1996).Google Scholar

  • [20] B. Weiss, R. Stickler, Metall. Trans. 3, 851-866 (1972).CrossrefGoogle Scholar

  • [21] D.M. Escriba, E. Materna-Morris, R.L. Plaut, A.F. Padilha, Mater. Charact. 60, 1214-1219 (2009).CrossrefGoogle Scholar

  • [22] J. Michalska, M. Sozańska, Mater. Charact. 56, 355-362 (2006).Google Scholar

  • [23] S.K. Ghosh, S. Mondal, Mater. Charact. 59, 1776-1783 (2008). doi:10.1016/j.matchar.2008.04.008.CrossrefGoogle Scholar

  • [24] R.D. Campbell, Key Eng. Mater. 69-70, 167-216 (1992).Google Scholar

  • [25] M.A. Streicher, Corrosion. 30, 115-124 (1974).CrossrefGoogle Scholar

  • [26] M.J. Cieslak, A.M. Ritter, W.F. Savage, Weld. J. 63, 133-140 (1984).Google Scholar

  • [27] N. Llorca-Isern, H. López-Luque, I. López-Jiménez, M.V. Biezma, Mater. Charact. 112, 20-29 (2016).Google Scholar

  • [28] A. Inoue, T. Masumoto, Metall. Trans. A. 11, 739-747 (1980).CrossrefGoogle Scholar

About the article

Published Online: 2016-07-01

Published in Print: 2016-06-01


Citation Information: Archives of Metallurgy and Materials, ISSN (Online) 2300-1909, DOI: https://doi.org/10.1515/amm-2016-0205.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in