Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Open Access
Online
ISSN
2300-1909
See all formats and pricing
More options …

Mechanical Properties and Corrosion Resistance of HVOF Sprayed Coatings Using Nanostructured Carbide Powders

W. Żórawski / M. Makrenek / A. Góral
  • Corresponding author
  • Institute of Metallurgy and Materials Science Polish Academy of Sciences, 25 Reymonta, 30-059 Krakow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-18 | DOI: https://doi.org/10.1515/amm-2016-0297

Abstract

Nanostructured and composite WC-12Co coatings were prepared by means of the supersonic spray process (HVOF). The microstructure and composition of WC-12Co nanostructured powder were analyzed by scanning electron microscope (SEM) and transmission electron microscope (TEM). Investigations revealed nano grains of WC with the size in the range of 50-500 nm. The nanostructured sprayed coating was analysed by SEM and phase composition was investigated by X-ray diffractometer (XRD). A denser coating structure with higher hardness was observed compared to conventional coating with a small amount of W2C, WC1−x, W and some amorphous phase. Young’s modulus and hardness were determined by depth sensing indentation in HVOF sprayed WC-12Co nanostructured coatings. Results were compared to conventional coatings and the relevance of the nanostructure was analyzed. An indentation size effect was observed on the polished surface and cross-section of both coatings. Data provided by indentation tests at maximum load allow to estimate hardness and elastic modulus. Enhanced nanomechanical properties of conventional coating in comparison to nanostructured one were observed. Nanostructured coatings WC-12Co (N) revealed significantly better corrosion resistance.

Keywords: WC-12Co; HVOF; mechanical properties

REFERENCES

  • [1] L. Pawlowski: The science and engineering of thermal spray coatings, 2008 J. Willey & Sons Ltd, Chichester, II ed.Google Scholar

  • [2] W. Tillmann, P. Hollingsworth, I. Baumann, L. Hiegemann, C. Weddeling, A. E. Tekkaya, S. Rausch, D. Biermann, Surf. Coat. Technol. 268, 134-141 (2015).Google Scholar

  • [3] [A. Lekatou, D. Sioulas, A.E. Karantzalis, D. Grimanelis, Surf. Coat. Technol. 276, 539-556 (2015).Google Scholar

  • [4] S. Al-Mutairi, M.S.J. Hashmi, B.S. Yilbas, J. Stokes, Surf. Coat. Technol. 264, 175-186 (2015).Google Scholar

  • [5] C.-J. Li, G.-J. Yang, Int. J. Refract. Met. H. 39, 2-17 (2013).Google Scholar

  • [6] W. Żórawski, Surf. Coat. Technol. 220, 282-289 (2013).Google Scholar

  • [7] J. Rodriguez, A. Rico, E. Otero, W.M. Rainforth, Acta Mater. 57, 3148-3156 (2009).Google Scholar

  • [8] J. Nohava, R. Mušálek, J. Matějíček, M. Vilémová, Surf. Coat. Technol. 240, 243-249 (2014).Google Scholar

  • [9] W. Żórawski, A. Góral, O. Bokuvka, L. Lityńska-Dobrzyńska, K. Berent, Surf. Coat. Technol. 268, 190-197 (2015).Google Scholar

  • [10] S. Adamczak, D. Janecki, K. Stępień, Measurement 44 (1) 164-173 (2011).CrossrefGoogle Scholar

  • [11] D. Janecki., Stepień K., Adamczak S., Measurement, 43, 659-663 (2010).Google Scholar

  • [12] Handbook of Thermal Spray Technology, J.R. Davis, Davis & Associates, 2004 ASM International.Google Scholar

  • [13] C. Bartuli, T. Valente, F. Cipri, E. Bemporad, M. Tului, J. Therm. Spray Technol. 14, 187-195 (2005).CrossrefGoogle Scholar

  • [14] P. Chivavibul, M. Watanabe, S. Kuroda, C. Shinoda, Surf. Coat. Technol. 202 (3) 509-521 (2007).Google Scholar

  • [15] J.M. Guilemany, S. Dosta, J.R. Miguel, Surf. Coat. Technol. 201, 1180-1190 (2006).Google Scholar

  • [16] A. Lekatou, D. Sioulas, A.E. Karantzalis, D. Grimanelis, Surf. Coat. Technol. 276, 539-556 (2015).Google Scholar

  • [17] Josep A. Picas, Elisa Rupérez, Miquel Punset, Antonio Forn, Surf. Coat. Technol. 225 (25) 47-57 (2013).Google Scholar

  • [18] A. Lekatou, D. Zois, D. Grimanelis. Thin Solid Films, 516 (16) 5700-5705 (2008).Google Scholar

  • [19] M. Magnani, P.H. Suegama, N. Espallargas, S. Dosta, C.S. Fugivara, J.M. Guilemany, A.V. Benedetti, Surf. Coat. Technol. 202 (19) 4746-4757 (2008).Google Scholar

About the article

Published Online: 2017-01-18

Published in Print: 2016-12-01


Citation Information: Archives of Metallurgy and Materials, Volume 61, Issue 4, Pages 1839–1846, ISSN (Online) 2300-1909, DOI: https://doi.org/10.1515/amm-2016-0297.

Export Citation

© 2016 Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Wei Li, Peiquan Xu, Yueyue Wang, Yun Zou, Hongying Gong, and Fenggui Lu
Journal of Alloys and Compounds, 2018
[2]
G. Barsukov, V.V. Barabash, A.Yu. Rodichev, and O. Kozhus
Materials Science Forum, 2017, Volume 906, Page 80

Comments (0)

Please log in or register to comment.
Log in