Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Open Access
Online
ISSN
2300-1909
See all formats and pricing
More options …

Microstructural and Mechanical Study of Inconel 625 – Tungsten Carbide Composite Coatings Obtained by Powder Laser Cladding

J. Huebner
  • Corresponding author
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Krakow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. Rutkowski
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ D. Kata
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Kusiński
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-22 | DOI: https://doi.org/10.1515/amm-2017-0078

Abstract

This study focuses on the investigation of fine (~0.54 μm) tungsten carbide particles effect on structural and mechanical properties of laser cladded Inconel 625-WC composite. Three powder mixtures with different Inconel 625 – WC weight ratio (10, 20 and 30 weight % of WC) were prepared. Coatings were made using following process parameters: laser beam diameter ø ≈ 500 μm, powder feeder rotation speed – 7 m/min, scanning velocity – 10 m/min, laser power – 220 W changed to 320 W, distance between tracks – 1 mm changed to 0.8 mm. Microstructure and hardness were investigated. Coatings produced by laser cladding were crack and pore free, chemically and structurally homogenous. High cooling rate during cladding process resulted in fine microstructure of material. Hardness improved with addition of WC from 396.3 ±10.5 HV for pure Inconel 625, to 469.9 ±24.9 HV for 30 weight % of WC. Tungsten carbide dissolved in Inconel 625 which allowed formation of intergranular eutectic that contains TCP phases.

Keywords: Laser cladding; Inconel 625; Tungsten Carbide; Metal Matrix Composites; Rapid prototyping

REFERENCES

  • [1] S.S. Sandhu, A.S. Shahi, Journal of Materials Processing Technology 233, 1-8 (2016).Google Scholar

  • [2] P. Ganesh, R. Kaul, C.P. Paul, P. Tiwari, S.K. Rai, R.C. Prasad, L.M. Kukreja, Materials Science and Engineering A 527, 7490-7497 (2010).Google Scholar

  • [3] S. Zhou, Y. Huang, X. Zeng, Q. Hu, Materials Science and Engineering A 480, 564-572 (2008).Google Scholar

  • [4] S. Zhou, Y. Huang, X. Zeng, Applied Surface Science 254, 3110-3119 (2008).Google Scholar

  • [5] F. Xu, Y. Lv, Y. Liu, F. Shu, P. He, B. Xu, Journal of Material Science and Technology 29 (5), 480-488, (2013).Google Scholar

  • [6] G.P. Dinda, A.K. Dasgupta, J. Mazumder, Materials Science and Engineering A 509 (1-2), 98-104 (2009).Google Scholar

  • [7] J. Kusiński, M. Blicharski, Ł. Cieniek, S. Dymek, M. Rozmus-Górnikowska, Inżynieria Materiałowa XXXVI (6), 363-367 (2015).Google Scholar

  • [8] M. Rombouts, G. Maes, M. Mertens, Journal of Laser Applications 24 (5) (2012).Google Scholar

  • [9] S. Zhou, X. Dai, X. Zeng, Applied Surface Science 255 (20), 8494-8500 (2009).CrossrefGoogle Scholar

  • [10] J.N. DuPont, Metallurgical and Materials Transactions Archives A 27, 2612-3620 (1996).Google Scholar

  • [11] T.E. Abioye, J. Folkes, A.T. Clare, D.G. McCartney, Journal of Surface Engineering 29 (9), 647-653 (2013).CrossrefGoogle Scholar

  • [12] S. Zhou, Y. Huang, X. Zeng, Q. Hu, Materials Science and Engineering A 480, 564-572 (2008).Google Scholar

  • [13] K. Matsuura, T. Koyanagi, T. Ohmi, M. Kudoh, Materials Transactions 44 (5), 861-865 (2003).CrossrefGoogle Scholar

  • [14] T.I. Khan, S.A. Rizvi, K. Matsuura, Wear 244, 154-164 (2000)Google Scholar

  • [15] N. Mizuta, K. Matsuura, S. Kirihara, Y. Miyamoto, Materials Science and Engineering A 492, 199-204 (2008).Google Scholar

  • [16] T.E. Abioye, A.T. Clare, D.G. McCartney, Journal of Materials Processing Technology 217, 232-240 (2015).Google Scholar

  • [17] M. Donachie, J. Donachie, Superalloys. A Technical Guide, ASM International, USA, 2-22 (2002).Google Scholar

  • [18] T. Sims, N.S. Stoloff, W.C. Hagel, Superalloys II: High-temperature materials for aerospace and industrial power, Wiley (1987).Google Scholar

  • [19] C. Leyens, E. Beyer, J. Lawrence (Ed.) Laser Surface Engineering Processes and Applications: Chaper 8 Innovations in laser cladding and direct laser metal deposition, Woodhead Publishing Series in Electronic and Optical Materials 65, 181-191 (2015).Google Scholar

  • [20] L. Costa, R. Vilar, Rapid Prototyping Journal 15 (4), 264-279 (2009).CrossrefGoogle Scholar

  • [21] R.A. Ganeev, Laser-Surface Interactions, Springer Netherlands (2014).Google Scholar

  • [22] A.J. Antończak, Wybrane Zagadnienia z Laserowej Modyfikacji Materiałów, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław (2014).Google Scholar

  • [23] J. Kusiński, Lasery i ich zastosowanie w Inżynierii Materiałowej, Wydawnictwo Naukowe Akapit (2000).Google Scholar

  • [24] Inconel 625 Specification [cited 20 June 2016]: http://www.alloywire.com/inconel_alloy_625.html

  • [25] Inconel 625 properties specification [cited 20 June 2016]: http://www.hightempmetals.com/techdata/hitempInconel625data.php

About the article

Published Online: 2017-07-22

Published in Print: 2017-06-01


Citation Information: Archives of Metallurgy and Materials, Volume 62, Issue 2, Pages 531–538, ISSN (Online) 2300-1909, DOI: https://doi.org/10.1515/amm-2017-0078.

Export Citation

© 2017 Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Pingshun Deng, Chengwu Yao, Kai Feng, Xiangxiang Huang, Zhuguo Li, Yuyan Li, and Haixing Zhao
Surface and Coatings Technology, 2017

Comments (0)

Please log in or register to comment.
Log in