Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

See all formats and pricing
More options …
Volume 101, Issue 1


Experimental constraints on mantle sulfide melting up to 8 GPa

Zhou Zhang / Marc M. Hirschmann
Published Online: 2016-01-09 | DOI: https://doi.org/10.2138/am-2016-5308


We present high-pressure experiments up to 8 GPa that constrain the solidus and liquidus of a composition, Fe0.69Ni0.23Cu0.01S1.00, typical of upper mantle sulfide. Solidus and liquidus brackets of this monosulfide are parameterized according to a relation similar to the Simon-Glatzel equation, yielding, respectively, T (°C) = 1015.1 [P(GPa)/1.88 + 1]0.206 and T (°C) = 1067.3 [P(GPa)/1.19 + 1]0.149 (1 ≤ P ≤ 8). The solidus fit is accurate within ±15 °C over the pressure intervals 1–3.5 GPa and within ±30 °C over the pressure intervals 3.5–8.0 GPa. The solidus of the material examined is cooler than the geotherm for convecting mantle, but hotter than typical continental geotherms, suggesting that sulfide is molten or partially molten through much of the convecting upper mantle, but potentially solid in the continental mantle. However, the material examined is one of the more refractory among the spectrum of natural mantle sulfide compositions. This, together with the solidus-lowering effects of O and C not constrained by the present experiments, indicates that the experimentally derived melting curves are upper bounds on sulfide melting in the Earth's upper mantle and that the regions where sulfide is molten are likely extensive in both the convecting upper mantle and, potentially, the deeper parts of the oceanic and continental lithosphere, including common source regions of many diamonds.

Keywords: Sulfide; mantle; solidus; melting; experimental constraint; calibration

References cited

  • Alard, O., Griffin, W.L., Lorand, J.P., Jackson, S.E., and O’Reilly, S.Y. (2000) Non-chondritic distribution of the highly siderophile elements in mantle sulfides. Nature, 407, 891–894.Google Scholar

  • Alard, O., Griffin, W.L., Pearson, N.G., Lorand, J.P., and O’Reilly, S.Y. (2002) New insights into the Re/Os systematics of sub-continental lithospheric mantle from in-situ analysis of sulfides. Earth and Planetary Science Letters, 203, 651–663.Google Scholar

  • Aulbach, S., Griffin, W.L., Pearson, N.J., O’Reilly, S.Y., Kivi, K., and Doyle, B.J. (2009) Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re-Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chemical Geology, 208, 61–88.Google Scholar

  • Ballhaus, C., Bockrath, C., Wohlgemuth-Ueberwasser, C., Laurenz, V., and Berndt, J. (2006) Fractionation of the noble metals by physical processes. Contributions to Mineralogy and Petrology, 152, 667–684.Google Scholar

  • Bockrath, C., Ballhaus, C., and Holzheid, A. (2004) Fractionation of the platinum group elements during mantle melting. Science, 305, 1951–1954.Google Scholar

  • Boehler, R. (1992) Melting of the Fe-FeO and the Fe-FeS systems at high pressure: Constraints on core temperatures. Earth and Planetary Science Letters, 111, 217–227.Google Scholar

  • Boehler, R. (1996) Melting and element partitioning Fe-FeS temperatures to 620 kbars. Physics of the Earth and Planetary Interiors, 96, 181–186.Google Scholar

  • Bohlen, S., and Boettcher, A.L. (1982) The quartz-coesite transformation: a precise determination and the effects of other components. Journal of Geophysical Research, 87, 7073–7078.Google Scholar

  • Bose, K., and Ganguly, J. (1995) Quartz-coesite transition revisited: reversed experimental determination at 500–1200 °C and retrieved thermochemical properties, American Mineralogist, 80, 231–238.Google Scholar

  • Bulanova, G.P. (1995) The formation of diamond. Journal of Geochemical Exploration, 53, 1–23, http://dx.doi.org/10.1016/0375-6742(94)00016-5.Crossref

  • Bulanova, G.P., Griffin, W.L., Ryan, C.G., Shestakova, O.Y., and Barnes, S.J. (1996) Trace elements in sulfide inclusions from Yakutian diamonds. Contributions to Mineralogy and Petrology, 124, 111–125.Google Scholar

  • Campbell, A.J., Seagleb, C.T., Heinzb, D.L., Shend, C.G., and Prakapenkae, V.B. (2007) Partial melting in the iron–sulfur system at high pressure: A synchrotron X-ray diffraction study. Physics of the Earth and Planetary Interiors, 162, 119–128.Google Scholar

  • Chi, H., Dasgupta, R., Duncan, M.S., and Shimizu, N. (2014) Partitioning of carbon between Fe-rich alloy melt and silicate melt in a magma ocean—implications for the abundance and origin of volatiles in Earth, Mars, and the Moon. Geochimica et Cosmochimica Acta, 139, 447–471.Google Scholar

  • Dasgupta, R., Hirschmann, M.M., and Withers, C.W. (2004) Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth and Planetary Science Letters, 227, 73–85.Google Scholar

  • Dasgupta, R., Buono, A., Whelan, G., and Walker, D. (2009) High-pressure melting relations in Fe–C–S systems: Implications for formation, evolution, and structure of metallic cores in planetary bodies. Geochimica et Cosmochimica Acta, 73, 6678–6691.Google Scholar

  • Delpech, G., Lorand, J.P., Grégoirec, M., Cottind, J.Y., and O’Reilly, S.Y. (2012) In-situ geochemistry of sulfides in highly metasomatized mantle xenoliths from Kerguelen, southern Indian Ocean. Lithos, 154, 296–314.Google Scholar

  • Eggler, D.H., and Lorand, J.P. (1993) Mantle sulfide geobarometry. Geochimica et Cosmochimica Acta, 57, 2213–2222.Google Scholar

  • Fei, Y.W., Bertka, C.M., and Finger, L.W. (1997) High-pressure iron-sulfur compound, Fe3S2, and melting relations in the Fe-FeS system. Science, 275, 1621–1623.Google Scholar

  • Fram, M., and Longhi, J. (1992) Phase equilibria of dikes associated with Proterozoic anorthosite complexes. American Mineralogist, 77, 605–616.Google Scholar

  • Frost, D.J., and McCammon, C.A. (2008) The redox state of Earth's mantle. Annual Review of Earth and Planetary Sciences, 36, 389–420.Google Scholar

  • Frost, D.J., Liebske, C., Langenhorst, F., McCammon, C.A., Trønnes, R.G., and Rubie, D.C. (2004) Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature, 428, 409–412.Google Scholar

  • Gaetani, G.A., and Grove, T.L. (1997) Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: Constraints on core formation in the Earth and Mars. Geochimica et Cosmochimica Acta, 61, 1829–1846.Google Scholar

  • Gaetani, G.A., and Grove, T.L. (1999) Wetting of mantle olivine by sulfide melt: implications for Re/Os ratios in mantle peridotite and late-stage core formation. Earth and Planetary Science Letters, 169, 147–163.Google Scholar

  • Graham, J., and McKenzie, C.D. (1987) Oxygen in pyrrhotite: 2. Determination of oxygen in natural pyrrhotite. American Mineralogist, 72, 605–609.Google Scholar

  • Graham, J., Bennett, C.E.G., and Riessen, A. (1987) Oxygen in pyrrhotite: 1. Thermomagnetic behavior and annealing of pyrrhotites containing small quantities of oxygen. American Mineralogist, 72, 599–605.Google Scholar

  • Gunn, S.C., and Luth, R.W. (2006) Carbonate reduction by Fe-S-O melts at high pressure and high temperature. American Mineralogist, 91, 1110–1116.Google Scholar

  • Guo, J.F., Griffin, W.L., and O’Reilly, S.Y. (1999) Geochemistry and origin of sulphide minerals in mantle xenoliths: Qilin, Southeastern China. Journal of Petrology, 40, 1125–1149.Google Scholar

  • Hart, S.R., and Gaetani, G.A. (2006) Mantle Pb paradoxes: the sulfide solution. Contributions to Mineralogy and Petrology, 152, 295–308.Google Scholar

  • Helffrich, G., Kendall, M., Hammond, J.O.S., and Carroll, M.R. (2011) Sulfide melts and long-term low seismic wavespeeds in lithospheric and asthenospheric mantle. Journal of Geophysical Research, 38, 11,301–11,305, http://dx.doi. org/10.1029/2011GL047126.Crossref

  • Hirschmann, M.M. (2000) Mantle solidus: Experimental constraints and the effects of peridotite composition. Geochemistry, Geophyics, Geosystems, 1, 1042.Google Scholar

  • Hsieh, K.C., Schmid, R., and Chang, Y.A. (1987) The Fe-Ni-S system II. A Thermodynamic model for the ternary monosulfide phase with the nickel arsenide structure. High Temperature Science, 23, 39–52.Google Scholar

  • Huang, S., Lee, C.T., and Yin, Q.Z. (2014) Missing lead and high 3He/4He in ancient sulfides associated with continental crust formation. Nature Scientific Reports, 4, 5314, http://dx.doi.org/10.1038/srep05314.Crossref

  • Jones, J.H., and Walker, D. (1991) Partitioning of siderophile elements in the Fe-NiS system: 1 bar to 80 kbar. Earth and Planetary Science Letters, 105, 127–133.Google Scholar

  • Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T., and Ito, E. (2010) Adiabatic temperature profile in the mantle. Physics of Earth and Planetary Interiors, 183, 212–218.Google Scholar

  • Katz, R.F., Spiegelman, M., and Langmuir, C.H. (2003) A new parameterization of hydrous mantle melting. Geochemistry, Geophyics, Geosystems, 4, 1073.Google Scholar

  • Kullerud, G. (1963) Thermal stability of pentlandite. Canadian Mineralogist, 7, 353–366.Google Scholar

  • Li, Y., and Audétat, A. (2012) Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions.Google Scholar

  • Lorand, J.P. (1989) Abundance and distribution of Cu-Fe-Ni sulfides, sulfur, copper and platinum-group elements in orogenic-type spinel lherzolite massifs of Arirge (northeastern Pyrenees, France). Earth and Planetary Science Letters, 93, 50–64.Google Scholar

  • Lorand, J.P., and Alard, O. (2001) Platinum-group element abundances in the upper mantle: New constraints from in situ and whole-rock analyses of Massif Central xenoliths (France). Geochimica et Cosmochimica Acta, 65, 2789–2806.Google Scholar

  • Lorand, J.-P., Delpech, G., Grégoire, M., Moine, B., O’Reilly, S.Y., and Cottin, J.-Y. (2004) Platinum-group elements and the multistage metasomatic history of Kerguelen lithospheric mantle (South Indian Ocean). Chemical Geology, 208, 195–215.Google Scholar

  • Lorand, J.P., Luguet, A., and Alard, O. (2013) Platinum-group element systematics and petrogenetic processing of the continental upper mantle: A review. Lithos, 164–167, 2–21.Google Scholar

  • Luo, S.N., Mosenfelder, J.L., Asimow, P.D., and Ahrens, T.J. (2002) Direct shock wave loading of Stishovite to 235 GPa: Implications for perovskite stability relative to an oxide assemblage at lower mantle conditions. Journal of Geophysical Research, 29, http://dx.doi.org/10.1029/2002GL015627.Crossref

  • McDade, P., Wood, B.J., Van Westrenen, W., Brooker, R., Gudmundsson, G., Soulard, H., Najorka, J., and Blundy, J. (2002) Pressure corrections for a selection of piston-cylinder cell assemblies. Mineralogical Magazine, 66, 1021–1028.Google Scholar

  • McDonough, W.F., and Sun, S.S. (1995) The composition of the Earth. Chemical Geology, 120, 223–253.Google Scholar

  • Mirwald, P.W., and Kennedy, G.C. (1979) The melting curve of gold, silver, and copper to 60 Kbar pressure: a reinvestigation. Journal of Geophysical Research, 84, 6750–6756.Google Scholar

  • Mirwald, P.W., Getting, I.C., and Kennedym, G.C. (1975) Low-friction cell for piston-cylinder high-pressure apparatus. Journal of Geophysical Research, 80, 1519–1525.Google Scholar

  • Morard, G., Andrault, D., Guignot, N., Siebert, J., Garbarino, G., and Antonangeli, D. (2011) Melting of Fe–Ni–Si and Fe–Ni–S alloys at megabar pressures: implications for the core–mantle boundary temperature. Physics and Chemistry of Minerals, 38, 767–776.Google Scholar

  • Mungall, J.E., and Su, S.G. (2005) Interfacial tension between magmatic sulfide and silicate liquids: Constraints on kinetics of sulfide liquation and sulfide migration through silicate rocks. Earth and Planetary Science Letters, 234, 135–149.Google Scholar

  • Pearson, D.G., and Wittig, N. (2014) The formation and evolution of cratonic mantle lithosphere: Evidence from mantle xenoliths. Treatise on Geochemistry, 2, 255–292.Google Scholar

  • Pearson, D.G., Shirey, S.B., Harris, J.W., and Carlson, R.W. (1998) Sulphide inclusions in diamonds from the Koffiefontein kimberlite, S Africa: constraints on diamond ages and mantle Re–Os systematics. Earth and Planetary Science Letters, 160, 311–326.Google Scholar

  • Pearson, N.J., Alard, O., Griffin, W.L., Jackson, S.E., and O’Reilly, S.Y. (2002) In situ measurement of Re-Os isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry: analytical methods and preliminary results. Geochimica et Cosmochimica Acta, 66, 1037–1050.Google Scholar

  • Pearson, D.G., Canil, D., and Shirey, S.B. (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. Treatise on Geochemistry, 2, 171–275.Google Scholar

  • Pearson, D.G., Parman, S.W., and Nowell, G.M. (2007) A link between large mantle melting events and continent growth seen in osmium isotopes. Nature, 449, 202–205.Google Scholar

  • Pollack, H.N., and Chapman, D.S. (1977) On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics, 38, 279–296.Google Scholar

  • Powell, W., and O’Reilly, S.Y. (2007) Metasomatism and sulfide mobility in lithospheric mantle beneath eastern Australia: Implications for mantle Re–Os chronology. Lithos, 94, 132–147.Google Scholar

  • Richardson, S.H., Shirey, S.B., Harris, J.W., and Carlson, R.W. (2001) Archean subduction recorded by Re-Os isotopes in eclogitic sulfide inclusions in Kimberley diamonds. Earth and Planetary Science Letters, 191, 257–266.Google Scholar

  • Rohrbach, A., Ballhaus, C., Gola-Schindler, U., Ulmer, P., Kamnetsky, V.S., and Kuzmin, D.V. (2007) Metal saturation in the upper mantle. Nature, 449, 456–460.Google Scholar

  • Rohrbach, A., Ballhaus, C., Ulmer, P., Kamnetsky, V.S., and Gola-Schindler, U. (2011) Experimental evidence for a reduced metal-saturated upper mantle. Journal of Petrology, 52, 717–731.Google Scholar

  • Roy-Barman, M., Wasserburga, G.J., Papanastassioua, D.A., and Chaussidon, M. (1998) Osmium isotopic compositions and Re–Os concentrations in sulfide globules from basaltic glasses. Earth and Planetary Science Letters, 154, 331–347.Google Scholar

  • Ryzhenko, B., and Kennedy, G.C. (1973) The effect of pressure on the eutectic in the system Fe-FeS. American Journal of Science, 273, 803–810.Google Scholar

  • Shannon, M.C., and Agee, C.B. (1998) Percolation of core melts at lower mantle conditions. Science, 280, 1059–1061.Google Scholar

  • Sharp, W.E. (1969) Melting curves of sphalerite, galena, and pyrrhotite and the decomposition curve of pyrite between 30 and 65 kilobars. Journal of Geophysical Research, 74, 1645–1652.Google Scholar

  • Shi, C.Y., Zhang, L., Yang., W, Liu, Y., Wang, J., Meng, Y., Andrews, J.C., and Mao, W.L. (2013) Formation of an interconnected network of iron melt at Earth's lower mantle conditions. Nature Geoscience, 6, 971–975.Google Scholar

  • Shirey, S.B., and Richardson, S.H. (2011) Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science, 333, 434–436.Google Scholar

  • Shirey, S.B., Cartigny, P., Frost, D.J., Keshav, S., Paolo Nimis, F.N., Pearson, D.G., Sobolev, N.V., and Walter, M.J. (2013) Diamonds and the geology of mantle carbon. Reviews in Mineralogy and Geochemistry, 75, 355–421.Google Scholar

  • Simon, F., and Glatzel, G. (1929) Bemerkungen zur Schmelzdruckkurve. Zeitschrift für anorganische und allgemeine Chemie, 178, 309–316.Google Scholar

  • Stachel, T., and Harris, J.W. (2008) The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geology Reviews, 34, 5–32.Google Scholar

  • Stewart, A.J., Schmidt, M.W., Westrenen, W.V., and Liebske, C. (2007) Mars: A new core-crystallization regime. Science, 316, 1323–1325.Google Scholar

  • Tenner, T.J., Hirschmann, M.M., Withers, C.W., and Hervig, R.L. (2009) Hydrogen partitioning between nominally anhydrous upper mantle minerals and melt between 3 and 5 GPa and applications to hydrous peridotite partial melting. Chemical Geology, 262, 42–56.Google Scholar

  • Tenner, T.J., Hirschmann, M.M., Withers, C.W., and Hervig, R.L. (2012) H2O storage capacity of olivine and low-Ca pyroxene from 10 to 13 GPa: consequences for dehydration melting above the transition zone. Contributions to Mineralogy and Petrology, 163, 297–316.Google Scholar

  • Turcotte, D. L., and Schubert, G. (2002) Geodynamics, 2nd ed., pp. 456. Cambridge University Press, U.K.Google Scholar

  • Urakawa, S., Kato, M., and Kumazawa, M. (1987) Experimental study on the phase relations in the system Fe-Ni-O-S up to 15 GPa. In M. Manghnani and Y. Syono, Eds., High-Pressure Research in Mineral Physics, p. 95–111. Terra, Tokyo/AGU, Washington, D.C.Google Scholar

  • Usselman, T. (1975) Experimental approach to the state of the core: Part I. The liquidus relations of the Fe-rich portion of the Fe-Ni-S system from 30 to 100 kbars. American Journal of Science, 275, 278–290.Google Scholar

  • Waldner, P., and Pelton, A. (2004) Critical thermodynamic assessment and modeling of the Fe-Ni-S system. Metallurgical and Materials Transactions B, 35, 897–907.Google Scholar

  • Westerlund, K.J., Shirey, S.B., Richardson, S.H., Carlson, R.W., Gurney, J.J., and Harris, J.W. (2006) A subduction wedge origin from Paleoarchaean peridotitic diamonds and harzburgites from the Panda kimberlite, Slave craton: evidence from Re-Os isotope systematics. Contributions to Mineralogy and Petrology, 152, 275–294.Google Scholar

  • Withers, A.C., and Hirschmann, M.M. (2007) H2O storage capacity of MgSiO3 clinoenstatite at 8–13 GPa, 1,100–1,400 °C. Contributions to Mineralogy and Petrology, 154, 663–674.Google Scholar

  • Withers, A.C., Hirschmann, M.M., and Tenner T.J. (2011) The effect of Fe on olivine H2O storage capacity: Consequences for H2O in the martian mantle. American Mineralogist, 96, 1039–1053.Google Scholar

  • Xirouchakis, D., Hirschmann, M.M., and Simpson, J.A. (2001) The effect of titanium on the silica content and on mineral–liquid partitioning of mantleequilibrated melts. Geochimica et Cosmochimica Acta, 65, 2201–2217.Google Scholar

About the article

Received: 2015-01-17

Accepted: 2015-07-22

Published Online: 2016-01-09

Published in Print: 2016-01-01

Manuscript handled by Charles Lesher.

Citation Information: American Mineralogist, Volume 101, Issue 1, Pages 181–192, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5308.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in