Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 101, Issue 1

Issues

K-bentonites: A review

Warren D. Huff
Published Online: 2016-01-09 | DOI: https://doi.org/10.2138/am-2016-5339

Abstract

Pyroclastic material in the form of altered volcanic ash or tephra has been reported and described from one or more stratigraphic units from the Proterozoic to the Tertiary. This altered tephra, variously called bentonite or K-bentonite or tonstein depending on the degree of alteration and chemical composition, is often linked to large explosive volcanic eruptions that have occurred repeatedly in the past. K-bentonite and bentonite layers are the key components of a larger group of altered tephras that are useful for stratigraphic correlation and for interpreting the geodynamic evolution of our planet. Bentonites generally form by diagenetic or hydrothermal alteration under the influence of fluids with high-Mg content and that leach alkali elements. Smectite composition is partly controlled by parent rock chemistry. Studies have shown that K-bentonites often display variations in layer charge and mixed-layer clay ratios and that these correlate with physical properties and diagenetic history. The following is a review of known K-bentonite and related occurrences of altered tephra throughout the timescale from Precambrian to Cenozoic.

Keywords: K-bentonite; bentonite; tephra; explosive volcanism; volcanic ash; Review article

References cited

  • Admakin, L.A. (2002) Accumulation and post-sedimentary diagenesis of tonsteins. Lithology and Mineral Resources, 37, 60–67.Google Scholar

  • Ahn, J.H., Peacor, D.R., and Coombs, D.S. (1988) Formation mechanisms of illite, chlorite and mixed layer illite-chlorite in Triassic volcanogenic sediments from the Southland Syncline, New Zealand. Contributions to Mineralogy and Petrology, 99, 82–89.Google Scholar

  • Allen, V.T. (1929) Altered tuffs in the Ordovician of Minnesota. Journal of Geology, 37, 239–248.Google Scholar

  • Allen, V.T. (1930) Triassic bentonite of the Painted Desert. American Journal of Science, Series, 5, 19, 283–288.Google Scholar

  • Anceau, A. (1992) Sudoite in some Visean (Lower Carboniferous) K-bentonites from Belgium. Clay Minerals, 27, 283–292.Google Scholar

  • Astini, R.A., Collo, G., and Martina, F. (2007) Ordovician K-bentonites in the upper plate active margin of Western Gondwana, (Famatina Ranges): Stratigraphic and palaeogeographic significance. Gondwana Research, 11, 311–325.Google Scholar

  • Bangert, B., Stollhofen, H., Lorenz, V., and Armstrong, R. (1999) The geochronology and significance of ash-fall tuffs in the glaciogenic Carboniferous-Permian Dwyka Group of Namibia and South Africa. Journal of African Earth Sciences, 29, 33–49.Google Scholar

  • Becker, L.E. (1974) Silurian and Devonian rocks in Indiana southwest of the Cincinnati Arch. Indiana Geological Survey Bulletin 50, 83 p.Google Scholar

  • Bergström, S.M., Huff, W.D., Kaljo, D., and Kolata, D.R. (1992) Silurian K-bentonites in the Iapetus region; a preliminary event-stratigraphic and tectonomagmatic assessment. Geologiska Foereningen i Stockholm Foerhandlingar, 114, 327–334.Google Scholar

  • Bergström, S.M., Huff, W.D., Kolata, D.R., and Bauert, H. (1995) Nomenclature, stratigraphy, chemical fingerprinting, and areal distribution of some Middle Ordovician K-bentonites in Baltoscandia. GFF, 117, 1–13.Google Scholar

  • Bergström, S.M., Huff, W.D., Kolata, D.R., Krekeler, M.P.S., Cingolani, C., and Astini, R.A. (1996) Lower and Middle Ordovician K-bentonites in the Precordillera of Argentina: A progress report. XIII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos, V, 481–490.Google Scholar

  • Bergström, S.M., Huff, W.D., Kolata, D.R., and Melchin, M.J. (1997a) Occurrence and significance of Silurian K-bentonite beds at Arisaig Nova Scotia, Eastern Canada. Canadian Journal of Earth Sciences, 34, 1630–1643.Google Scholar

  • Bergström, S.M., Huff, W.D., Kolata, D.R., Yost, D.A., and Hart, C. (1997b) A unique Middle Ordovician K-bentonite bed succession at Röstånga, S. Sweden. Geologiska Föreningens I Stockholm Förhandlingar, 119, 231–244.Google Scholar

  • Bergström, S.M., Huff, W.D., and Kolata, D.R. (1998a) Early Silurian (Llandoverian) K-bentonites discovered in the southern Appalachian thrust belts, eastern U.S.A.: Stratigraphy, geochemistry, and tectonomagmatic and paleogeographic implications. GFF, 120, 149–158.Google Scholar

  • Bergström, S.M., Huff, W.D., and Kolata, D.R. (1998b) The lower Silurian Osmundsberg K-bentonite. Part I: Stratigraphic position, distribution, and palaeogeographic significance. Geological Magazine, 135, 1–13.Google Scholar

  • Bergström, S.M., Schmitz, B., Saltzman, M.R., and Huff, W.D. (2010) The Upper Ordovician Guttenberg δ13C excursion (GICE) in North America and Baltoscandia: Occurrence, chronostratigraphic significance and paleoenvironmental relationships. In S.C. Finney and W. Berry, Eds., Earth System During the Ordovician Period, 466, p. 37–67. Geological Society of America Special Paper.Google Scholar

  • Bertog, J., Huff, W.D., and Martin, J.E. (2007) Geochemical and mineralogical recognition of the bentonites in the lower Pierre Shale Group and their use in regional stratigraphic correlation. In J.E. Martin and D.C. Parris, Eds., The Geology and Paleontology of the Late Cretaceous Marine Deposits of the Dakotas, 427, p. 23–50. Geological Society of America Special Paper.Google Scholar

  • Blakey, R.C., and Gubitosa, R. (1983) Late Triassic paleogeography and depositional history of the Chinle Formation, southern Utah and northern Arizona. In M.W. Reynolds and E.D. Dolly, Eds., Mesozoic Paleogeography of West-Central United States. Rocky Mountain Paleogeography Symposium 2: Rocky Mountain Section, Society of Economic Paleontologists and Mineralogists, 57–76.Google Scholar

  • Blakey, R.C., and Middleton, L. (1983) Lower Mesozoic stratigraphy and depositional systems, southwest Colorado Plateau. Geologic excursions in stratigraphy and tectonics; from southeastern Idaho to the southern Inyo Mountains, California, via Canyonlands and Arches National Parks, Utah. Utah Geological and Mineralogical Survey Special Studies, 60, 33–39.Google Scholar

  • Bohor, B.F., and Triplehorn, D.M. (1993) Tonsteins: Altered volcanic-ash layers in coal-bearing sequences. Geological Society of America Special Papers, 285, 44 p.Google Scholar

  • Boles J.R., and Coombs D.S. (1975) Mineral reactions in zeolitic Triassic tuff, Hokonui Hills, New Zealand. Geological Society of America Bulletin 86, 163–173.Google Scholar

  • Boucot, A.J., Dewey, J.P., Dineley, D.L., Fletcher, R., Fyson, W.K., Griffin, J.G., Hickox, C.F., McKerrow, W.S., and Ziegler, A.M. (1974) Geology of the Arisaig area, Antigonish County, Nova Scotia. Geological Society of America, Special Paper 139, 196 p.Google Scholar

  • Bouroz, A., Spears, D.A., and Arbey, F. (1983) Essai de synthese des donnees acquises sur la genese et l’evolution des marqueurs petrographiques dans les bassins houillers. Memoire XVI, Societe Geologique du Nord. 114 pp.Google Scholar

  • Bouyo Houketchang, M., Zhao, Y., Penaye, J., Zhang, S.H., and Njel, U.O. (2015) Neoproterozoic subduction-related metavolcanic and metasedimentary rocks from the Rey Bouba Greenstone Belt of north-central Cameroon in the Central African Fold Belt: New insights into a continental arc geodynamic setting. Precambrian Research, 261, 40–53.Google Scholar

  • Bowring, S.A., and Erwin, D.H. (1998a) Anew look at evolutionary rates in deep time: uniting paleontology and high-precision geochronology. GSA Today, 8, 1–8.Google Scholar

  • Bowring, S.A., Davidek, K., Erwin, D.H., Jin, Y.G., Martin, M.W., and Wang, W. (1998b) U-Pb zircon geochronology and tempo of the end-Permian mass extinction. Science, 280, 1039–1045.Google Scholar

  • Brun, J., and Chagnon, A. (1979) Rock stratigraphy and clay mineralogy of volcanic ash beds from the Black River and Trenton Groups (Middle Ordovician) of southern Quebec. Canadian Journal of Earth Sciences, 16, 1499–1507.Google Scholar

  • Calarge, L.M., Meunier, A., and Formoso, M.L. (2003) A bentonite bed in the Acegua (RS, Brazil) and Melo (Uruguay) areas: A highly crystallized montmorillonite. Journal of South American Earth Sciences, 16, 187–198.Google Scholar

  • Calarge, L.M., Meunier, A., Lanson, B., and Formoso, M.L. (2006) Chemical signature of two Permian volcanic ash deposits within a bentonite bed from Melo, Uruguay. Annals of the Brazilian Academy of Sciences, 78, 525–541.Google Scholar

  • Chen, D., Wang, J., Qing, H., Yan, D., and Li, R. (2009) Hydrothermal venting activities in the Early Cambrian, South China: petrological, geochronological and stable isotopic constraints. Chemical Geology, 258, 168–181.Google Scholar

  • Cocks, L.R.M., and Torsvik, T. (2005) Baltica from the late Precambrian to mid-Paleozoic times: The gain and loss of a terrane's identity. Earth-Science Reviews, 72, 39–66.Google Scholar

  • Collinson, C. (1968) Devonian of the north-central region, United States. In D.H. Oswald, Ed., International Symposium on the Devonian System, 1967, Calgary, Alberta. Proceedings 1. Alberta Society of Petroleum Geologists 1, 933–971.Google Scholar

  • Conkin, J.E., and Conkin, B.M. (1992) Paleozoic Metabonites of North America: Part 3—New Ordovician Metabentonites from Kentucky and Tennessee. University of Louisville Studies in Paleontology and Stratigraphy, 20, 1–30.Google Scholar

  • Cressman, E.R. (1973) Lithostratigraphy and depositional environments of the Lexington Limestone (Ordovician) of central Kentucky. U.S. Geological Survey, Professional Paper, 768, 61 p.Google Scholar

  • Dai, S., Wang, X., Zhou, Y., Hower, J.C., Li, D., Chen, W., and Zhu, X. (2011) Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. Chemical Geology, 282, 29–44.Google Scholar

  • Dalla Salda, L., Bossi, J., and Cingolani, C. (1988) The Rio de la Plata cratonic region of southwestern Gondwanaland. Episodes, 11, 263–269.Google Scholar

  • DeCelles, P.G. (1994) Late Cretaceous-Paleocene synorogenic sedimentation and kinematic history of the Sevier Thrust Belt, Northeast Utah and Southwest Wyoming. Geological Society of America Bulletin, 106, 32–56.Google Scholar

  • Decker, N.B., Byerly, G.R., Thompson Stieglera, M., Lowe, D.R., and Stefurak, E. (2015) High resolution tephra and U/Pb chronology of the 3.33–3.26 Ga Mendon Formation, Barberton Greenstone Belt, South Africa. Precambrian Research, 261, 54–74.Google Scholar

  • Deconinck, J.F., Crasquin, S., Bruneau, L., Pellenard, P., Baudin, F., and Feng, Q. (2014) Diagenesis of clay minerals and K-bentonites in Late Permian/Early Triassic sediments of the Sichuan Basin (Chaotian section, Central China). Journal of Asian Earth Sciences, 81, 28–37.Google Scholar

  • Dennison, J.M., and Textoris, C.A. (1978) Tioga bentonite time-marker associated with Devonian shales in Appalachian Basin. In B.L. Schott, W.K. Overbey Jr., A.E. Hunt, and C.A. Komar, Eds., Proceedings of the First Eastern Gas Shales Symposium. U.S. Department of Energy, Publication MERC/SP-77-5, 166–182.Google Scholar

  • Diemer, J.A., Tyrrell, W.W. Jr., Bell, G.L., and Griffing, D.H. (2006) A Patterson Hills section of the Bentonite-Bearing Manzanita Limestone of the Cherry Canyon Formation, Culberson County, Texas. In G. Hinterlong, Ed., Permian Basin Section SEPM, Publication 2006-46, 52–58.Google Scholar

  • Dixon, J., Dietrich, J., Snowdon, L.R., Morrel, G., and McNeil, D.H. (1992) Geology and petroleum potential of Upper Cretaceous and Tertiary strata, Beaufort-Mackenzie area, Northwest Canada. AAPG Bulletin 76, 927–947.Google Scholar

  • Dorsch, J., and Driese, S.G. (1995) The Taconic foredeep as sediment sink and sediment exporter: Implications for the origin of the white quartz arenite blanket (Upper Ordovician–Lower Silurian) of the central and southern Appalachians. American Journal of Science, 295, 201–243.Google Scholar

  • Dos Anjos, C.W.D., Meunier, A., Guimarães, E.M., and El Albani, A. (2010) Saponite-rich black shales and nontronite beds of the Permian Irati Formation: Sediment sources and thermal metamorphism (Parana Basin, Brazil). Clays and Clay Minerals, 58, 606–626.Google Scholar

  • Dristas, J.A., and Frisicale, M.C. (1987) Rocas piroclasticas en el sector suroeste de las sierras septentrionales de la Provincia de Buenos Aires. Revista de la Asociación Argentina de Mineralogia, Petrologia y Sedimentologia, 18, 33–45.Google Scholar

  • Droste, J.B., and Vitaliano, C.J. (1973) Tioga Bentonite (Middle Devonian) of Indiana. Clays and Clay Minerals, 21, 9–13.Google Scholar

  • Drygant, D.M. (1983) History of Previous Research of the Silurian of Podolia. In B.S. Sokolov, Ed., The Silurian of Podolia. Academy of Sciences of the Ukrainian SSR, Kiev, 60–61.Google Scholar

  • Dubiel, R.F. (1987) Sedimentology of the Upper Triassic Chinle Formation, Southeastern Utah: Paleoclimate Implications. Journal of the Arizona-Nevada Academy of Science, 22, 35–45.Google Scholar

  • Duff, P.G., and Milligan, E.N. (1967) Upper Jurassic bentonite from Yuelba Creek, Roma District, Australia. Bureau of Mineral Resources, Geology and Geophysics Report 9, 5p.Google Scholar

  • Elliot, D.H., and Watts, D.R. (1974) The nature of volcaniclastic material in some Karroo and Beacon rocks. Transactions of the Geological Society of South Africa, 77, 109–111.Google Scholar

  • Exon, N.F., and Duff, P.G. (1968) Jurassic bentonite from the Miles District, Queensland. Bureau of Mineral Resources, Geology and Geophysics Report 49, 20 p.Google Scholar

  • Fildani, A., Weislogel, A., Drinkwater, N.J., McHargue, T., Tankard, A., Wooden, J., Hodgson, D., and Flint, S. (2009) U-Pb zircon ages from the southwestern Karoo Basin, South Africa—Implications for the Permian-Triassic boundary. Geology, 37, 719–722.Google Scholar

  • Fletcher, C.J.N., Chan, L.S., Sewell, R.J., Campbell, S.D.G., and Davis, D.W. (2004) Basement heterogeneity in the Cathaysia crustal block, southeast China. In J. Malpas, C.J.N. Fletcher, J.R. Ali, and J.C. Aitchison, Eds., Aspects of the Tectonic Evolution of China. Geological Society, London, Special Publication, 226, 145–155.Google Scholar

  • Fortey, N.J., Merriman, R.J., and Huff, W.D. (1996) Silurian and Late Ordovician K-bentonites as a record of late Caledonian volcanism in the British Isles. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 86, 167–180.Google Scholar

  • Glenister, B.F., Boyd, D.W., Furnish, W.M., Grant, R.E., Harris, M.T., Kozur, H., Lambert, L.L., Nassichuk, W.W., Newell, N.D., Pray, L.C., and others. (1992) The Guadalupian: Proposed International Standard for a Middle Permian Series. International Geological Review, 34, 857–888.Google Scholar

  • Grim, R.E., and Guven, N. (1978) Bentonites—geology, mineralogy, properties and uses. Developments in Sedimentology, 24, 256 p. Elsevier, New York.Google Scholar

  • Grotzinger, J.P., Bowring, S.A., Saylor, B.Z., and Kaufman, A.J. (1995) Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270, 598–604.Google Scholar

  • Hagemann, F., and Spjeldnæs, N. (1955) The Middle Ordovician Of The Oslo Region, Norway. 6. Notes on bentonites (K-bentonites) from the Oslo-Asker district. Norsk Geologisk Tidsskrift, 35, 29–52.Google Scholar

  • Hampton, B.D. (1989) Carbonate sedimentology of the Manzanita Member of the Cherry Canyon Formation. In P.M. Harris and G.S. Grover, Eds., Subsurface and Outcrop Examination of the Capitan Shelf Margin, Northern Delaware Basin. Society of Economic Paleontologists and Mineralogists Core Workshop, 13, 431–439.Google Scholar

  • Haynes, J.T. (1994) The Ordovician Deicke and Millbrig K-bentonite beds of the Cincinnati Arch and the southern Valley and Ridge Province. Geological Society of America Special Paper, 290, 1–80.Google Scholar

  • Haynes, J.T., Melson, W.G., and Kunk, M.J. (1995) Composition of biotite phenocrysts in Ordovician tephras casts doubt on the proposed trans-Atlantic correlation of the Millbrig K-bentonite (U.S.) and the Kinnekulle K-bentonite (Sweden). Geology, 23, 847–850.Google Scholar

  • Histon, K., Klein, P., Schönlaub, H.P., and Huff, W.D. (2007) Lower Paleozoic Kbentonites from the Carnic Alps, Austria. Austrian Journal of Earth Sciences, 100, 26–42.Google Scholar

  • Holland, S.M., and Patzkowsky, M.E. (1996) Sequence stratigraphy and long-term paleoceanographic changes in the Middle and Upper Ordovician of the eastern U.S. Geological Society of America Special Paper, 306, 117–128.Google Scholar

  • Huff, W.D. (2008) Ordovician K-bentonites: Issues in interpreting and correlating ancient tephras. Quaternary International, 178, 276–287.Google Scholar

  • Huff, W.D., and Bergström, S.M. (1995) Castlemainian K-bentonite beds in the Ningkuo Formation of the Jiangshan Province—The first Lower Ordovician K-bentonites found in China. Palaeoworld, 5, 101–105.Google Scholar

  • Huff, W.D., and Kolata, D.R. (1990) Correlation of the Ordovician Deicke and Millbrig K-bentonites between the Mississippi Valley and the southern Appalachians. American Association of Petroleum Geologists Bulletin, 74, 1736–1747.Google Scholar

  • Huff, W.D., and Türkmenoglu, A.G. (1981) Chemical characteristics and origin of Ordovician K-bentonites along the Cincinnati arch. Clays and Clay Minerals, 29, 113–123.Google Scholar

  • Huff, W.D., Bergström, S.M., and Kolata, D.R. (1992) Gigantic Ordovician volcanic ash fall in North America and Europe: Biological, tectonomagmatic, and eventstratigraphic significance. Geology, 20, 875–878.Google Scholar

  • Huff, W.D., Merriman, R.J., Morgan, D.J., and Roberts, B. (1993) Distribution and tectonic setting of Ordovician K-bentonites in the United Kingdom. Geological Magazine, 130, 93–100.Google Scholar

  • Huff, W.D., Kolata, D.R., Bergström, S.M., and Zhang, Y.-S. (1996a) Largemagnitude Middle Ordovician volcanic ash falls in North America and Europe: dimensions, emplacement and post-emplacement characteristics. Journal of Volcanology and Geothermal Research, 73, 285–301.Google Scholar

  • Huff, W.D., Morgan, D.J., and Rundle, C.C. (1996b) Silurian K-bentonites of the Welsh Borderlands: Geochemistry, mineralogy and K-Ar ages of illitization. Nottingham, British Geological Survey, Technical Report, WG/96/45, 25 p.Google Scholar

  • Huff, W.D., Bergström, S.M., Kolata, D.R., Cingolani, C., and Astini, R.A. (1998) Ordovician K-bentonites in the Argentine Precordillera: relations to Gondwana margin evolution. In R.J. Pankhurst and C.W. Rapela, Eds., The Proto-Andean Margin of Gondwana. Geological Society, London, Special Publications, 142, 107–126.Google Scholar

  • Huff, W.D., Muftuoglu, E., Kolata, D.R., and Bergström, S.M. (1999) K-bentonite bed preservation and its event stratigraphic significance. Acta Universitatis Carolinae–Geologica, 43, 491–493.Google Scholar

  • Huff, W.D., Bergström, S.M., and Kolata, D.R. (2000) Silurian K-bentonites of the Dnestr Basin, Podolia, Ukraine. Journal of the Geological Society of London, 157, 493–504.Google Scholar

  • Huff, W.D., Muftuoglu, E., Bergström, S.M., and Kolata, D.R. (2004) Resolving questions of consanguinity between the late Ordovician Deicke, Millbrig and Kinnekulle K-bentonites in North America and Baltoscandia. Geological Society of America Abstracts with Programs, 36, 246.Google Scholar

  • Huff, W.D., Bergström, S.M., and Kolata, D.R. (2010) Ordovician explosive volcanism: In S.C. Finney and W. Berry, Eds., Earth system during the Ordovician Period. Geological Society of America Special Paper 466, 13–28.Google Scholar

  • Huff, W.D., Dronov, A.V., Sell, B., Kanygin, A.V., and Gonta, T.V. (2014) Traces of explosive volcanic eruptions in the Upper Ordovician of the Siberian Platform. Estonian Journal of Earth Sciences, 63, 244–250.Google Scholar

  • Inanli, F.Ö., Huff, W.D., and Bergström, S.M. (2009) The Lower Silurian (Llandovery) Osmundsberg K-bentonite in Baltoscandia and the British Isles: Chemical fingerprinting and regional correlation. GFF, 131, 269–279.Google Scholar

  • Jenkins, R.J.F., Cooper, J.A., and Compston, W. (2002) Age and biostratigraphy of Early Cambrian tuffs from SE Australia and southern China. Journal of the Geological Society, London, 159, 645–658.Google Scholar

  • Karaouia, B., Breitkreuzb, C., Mahmoudia, A., Youbic, N., Hofmanne, M., Gärtnere, A., and Linnemann, U. (2015) U-Pb zircon ages from volcanic and sedimentary rocks of the Ediacaran Bas Draâ inlier (Anti-Atlas Morocco). Chronostratigraphic and provenance implications. Precambrian Research, 263, 43–58.Google Scholar

  • Kaljo, D., Hints, L., Martma, T., Nõlvak, J., and Oraspõld, A. (2004) Late Ordovician carbon isotope trend in Estonia, its significance in stratigraphy and environmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 210, 165–185.Google Scholar

  • Kay, G.M. (1935) Distribution of Ordovician altered volcanic materials and related clays. Geological Society of America Bulletin, 46, 225–244.Google Scholar

  • Kiipli, T., Kallaste, T., Nestor, V., and Loydell, D.K. (2010) Integrated Telychian (Silurian) K-bentonite chemostratigraphy and biostratigraphy in Estonia and Latvia. Lethaia, 43, 32–44.Google Scholar

  • Kiipli, T., Kallaste, T., Nielsen, A.T., Schovsbo, N.H., and Siir, S. (2014a) Geochemical discrimination of the Upper Ordovician Kinnekulle Bentonite in the Billegrav-2 drill core section, Bornholm, Denmark. Estonian Journal of Earth Sciences, 63, 264–270.Google Scholar

  • Kiipli, T., Radzevičius, S., and Kallaste, T. (2014b) Silurian bentonites in Lithuania: correlations based on sanidine phenocryst composition and graptolite biozonation—interpretation of volcanic source regions. Estonian Journal of Earth Sciences, 63, 18–29.Google Scholar

  • King, P.B. (1948) Geology of the southern Guadalupe Mountains, Texas. U.S. Geological Survey Professional Paper 215, 183 pp.Google Scholar

  • Knight, W.C. (1897) Mineral soap. Engineering and Mining Journal, 63, 600–601.Google Scholar

  • Knight, W.C. (1898) Bentonite. Engineering and Mining Journal, 66, 491.Google Scholar

  • Kolata, D.R., Frost, J.K., and Huff, W.D. (1987) Chemical correlation of K-bentonites in the Middle Ordovician Decorah Subgroup, upper Mississippi Valley. Geology, 15, 208–211.Google Scholar

  • Kolata, D.R., Huff, W.D., and Bergström, S.M. (1996) Ordovician K-bentonites of eastern North America. Geological Society of America Special Paper, 313, 1–84.Google Scholar

  • Kolata, D.R., Huff, W.D., and Bergström, S.M. (1998) Nature and regional significance of unconformities associated with the Middle Ordovician Hagan K-bentonite complex in the North American midcontinent. Geological Society of America Bulletin, 110, 723–739.Google Scholar

  • Koren’, T.N., Abushik, A.F., Modzalevskaya, T.L., and Predtechensky, N.N. (1989) Podolia. In C.H. Holland and M.G. Bassett, Eds., A Global Standard for The Silurian System. National Museum of Wales, Cardiff, 141–149.Google Scholar

  • Laufeld, S., and Jeppsson, L. (1976) Silicification and bentonites in the Silurian of Gotland. Geologiska Föreningens i Stockholrn Forhandlingar, 98, 313–344.Google Scholar

  • Leslie, S.A., Bergström, S.M., and Huff, W.D. (2006) Volcanic ash beds discovered in the Upper Bromide Formation and Womble Shale (Ordovician) in Oklahoma: The westernmost occurrences of the Millbrig and Deicke K-bentonites? Geological Society of America Abstracts with Programs, 38, 67.Google Scholar

  • Lowe, D.J. (2011) Tephrochronology and its application: A review. Quaternary Geochronology, 6, 107–153.Google Scholar

  • Lyons, P.C., Spears, D.A., Outerbridge, W.F., Congdon, R.D., and Evans, H.T. Jr. (1994) Euramerican tonsteins: Overview, magmatic origin, and depositionaltectonic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 106, 113–134.Google Scholar

  • Lyons, P.C., Krogh, T.E., Kwok, Y.Y., Davis, D.W., Outerbridge, W.F., and Evans, H.T. Jr. (2006) Radiometric ages of the Fire Clay tonstein [Pennsylvanian (Upper Carboniferous), Westphalian, Duckmantian]: A comparison of U–Pb zircon single-crystal ages and 40Ar/39Ar sanidine single-crystal plateau ages. International Journal of Coal Geology, 67, 259–266.Google Scholar

  • Martini, J.E.J. (1974) On the presence of ash beds in volcanic fragments in the graywacke of the Karoo System in Southern Cape Province (South Africa). Transactions of the Geological Society of South Africa, 77, 113–116.Google Scholar

  • Maynard, J.B., Chocyk-Jaminski, M., Gaines, R.R., Huff, W.D., Krekeler, M.P., Prokopenko, M., and Summers, A.M. (1996) Bentonites in the Late Permian (Tatarian) Irati Formation of Brazil; geochemistry and potential for stratigraphic correlation. Geological Society of America, Abstracts with Programs, 28, 280.Google Scholar

  • McKerrow, W.S., Dewey, J.F., and Scotese, C.R. (1991) The Ordovician and Silurian development of the Iapetus Ocean. Special Papers in Palaeontology, 44, 165–178.Google Scholar

  • McLachlan, I.R., and Jonker, J.P. (1990) Tuff beds in the northwestern part of the Karoo Basin. South African Journal of Geology, 93, 329–338.Google Scholar

  • Meek, F.B., and Hayden, F.V. (1862) Description of new Lower Silurian (Primordial), Jurassic, Cretaceous and Tertiary fossils, collected in Nebraska Territory, with some remarks on the rocks from which they were obtained. Philadelphia Academy of Natural Sciences Proceedings, 13, 415–447.Google Scholar

  • Millward, D., and Stone, P. (2012) Stratigraphical framework for the Ordovician and Silurian sedimentary strata of northern England and the Isle of Man. British Geological Survey, Geology and Landscape, England, Research Report RR/12/04, 122 p.Google Scholar

  • Moore, D.M., and Reynolds, R.C. (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, New York, 378 p.Google Scholar

  • Nelson, W.A. (1921) Notes on a volcanic ash bed in the Ordovician of Middle Tennessee. Tennessee Division of Geology Bulletin, 25, 46–48.Google Scholar

  • Nelson, W.A. (1922) Volcanic ash beds in the Ordovician of Tennessee, Kentucky and Alabama. Geological Society of America Bulletin, 33, 605–615.Google Scholar

  • Newell, N.D., Rigby, J.K., Fischer, A.G., Whiteman, A.J., Hickox, J.E., and Bradley, J.S. (1953) The Permian Reef Complex of Guadalupe Mountains Region, Texas and New Mexico, 236 p. Freeman, San Francisco.Google Scholar

  • Nicklen, B.L. (2011) Establishing a tephrochronologic framework for the Middle Permian (Guadalupian) type area and adjacent portions of the Delaware Basin and Northwestern Shelf, West Texas and Southeastern New Mexico, U.S.A. Unpublished Ph.D. dissertation, University of Cincinnati, 134 p.Google Scholar

  • Nicklen, B.L., Bell, G.L. Jr., and Huff, W.D. (2007) Ancient ash beds in the type area of the Middle Permian, Guadalupe Mountains National Park, west Texas, U.S.A. Geological Society of America Abstracts with Programs, 39, 148.Google Scholar

  • Nikiforova, O.I. (1977) Podolia. In A. Martinsson, Ed., The Silurian-Devonian Boundary. Schweizerbartsche Verlagsbuchhandlung, Stuttgart, 52–64.Google Scholar

  • Nordgulen, Ø., Barnes, C.G., Pedersen, R.B., Skår, Ø., and Yoshinobu, A.S. (2003) Mid Ordovician to Early Silurian granitoid plutonism in the Scandinavian Caledonides. Geological Society of America Abstracts with Programs, 35, 346.Google Scholar

  • Pearce, J.A., Harris, N.B.W., and Tindle, A.G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956–983.Google Scholar

  • Pellenard, P., Deconinck, J-F., Huff, W.D., Thierry, J., Marchand, D., Fortwengler, D., and Trouiller, A. (2003) Characterization and correlation of Upper Jurassic (Oxfordian) bentonite deposits in the Paris Basin and the Subalpine Basin, France. Sedimentology, 50, 1035–1060.Google Scholar

  • Pellenard, P., Nomade, S., Martire, L., De Oliveira Ramalho, F., Monna, F., and Guillou, H. (2013) The first 40Ar-39Ar date from Oxfordian ammonite-calibrated volcanic layers (bentonites) as a tie-point for the Late Jurassic. Geological Magazine, 150, 1136–1142.Google Scholar

  • Poiré, D.G., Spalletti, L.A., and Del Valle, A. (2003) The Cambrian-Ordovician siliciclastic platform of the Balcarce Formation (Tandilia System, Argentina): Facies, trace fossils, palaeoenvironments and sequence stratigraphy. Geologica Acta, 1, 41–60.Google Scholar

  • Price, N.B., and Duff, P.McL.D. (1969) Mineralogy and chemistry of tonsteins from carboniferous sequences in Great Britain. Sedimentology 13, 45–69.Google Scholar

  • Ross, C.S. (1928) Altered Paleozoic volcanic materials and their recognition. Bulletin American Association of Petroleum Geologists, 12, 143–164.Google Scholar

  • Ross, R.J. Jr., and Naeser, C.W. (1984) The Ordovician timescale—New refinements. In D. Bruton, Ed., Aspects of the Ordovician System. Palaeontological contributions from the University of Oslo, 295, 5–10.Google Scholar

  • Ross, C.S., and Shannon, E.V. (1926) The minerals of bentonite and related clays and their physical properties. Journal of the American Ceramic Society, 9, 77–96.Google Scholar

  • Rowley, D.B., and Kidd, W.S.F. (1981) Stratigraphic relationships and detrital composition of the medial Ordovician flysch of western New England: Implications for the tectonic evolution of the Taconic orogeny. Journal of Geology, 89, 199–218.Google Scholar

  • Rubidge, B.S., Erwin, D.H., Ramezani, J., Bowring, S.A., and de Klerk, W.J. (2013) High-precision temporal calibration of Late Permian vertebrate biostratigraphy: U-Pb zircon constraints from the Karoo Supergroup, South Africa. Geology, 41, 363–366.Google Scholar

  • Santos, R.V., Souza, P.A., de Alvarenga, C.J.S., Dantas, E.L., Pimentel, M.M., de Oliveira, C.G., and de Araújo, L.M. (2006) Shrimp U-Pb zircon dating and palynology of bentonitic layers from the Permian Irati Formation, Paraná Basin, Brazil. Gondwana Research, 9, 456–463.Google Scholar

  • Saylor, B.Z., Poling, J.M., and Huff, W.D. (2005) Stratigraphic and chemical correlation of volcanic ash beds in the terminal Proterozoic Nama Group. Geological Magazine, 142, 519–538.Google Scholar

  • Schoner, A.E. (1985) The Clinch Sandstone (Lower Silurian) along Highway 25E at Beans Gap. In K.R. Walker, Ed., The Geologic History of the Thorn Hill Paleozoic Section (Cambrian–Mississippian), Eastern Tennessee. University of Tennessee, Department of Geological Sciences, Studies in Geology 10, 100–110.Google Scholar

  • Schönlaub, H.P. (1992) Stratigraphy, biogeography and paleoclimatology of the Alpine Palaeozoic and its implications for plate movements. Jahrbuch Geologische Bundesanstalt, 135, 381–418.Google Scholar

  • Schönlaub, H.P. (1993) Stratigraphy, biogeography and climatic relationships of the Alpine Palaeozoic. In J.F. von Raumer and F.Neubauer, Eds., Pre-Mesozoic Geology in the Alps, p. 65–91. Springer-Verlag, New York.Google Scholar

  • Scotese, C.R., and McKerrow, W.S. (1991) Ordovician plate tectonic reconstructions. In C.R. Barnes and S.H. Williams, Eds., Advances in Ordovician geology. Geological Survey of Canada Paper, 90-9, 271–282.Google Scholar

  • Sell, B., Ainsaar, L., and Leslie, S. (2013) Precise timing of the Late Ordovician (Sandbian) supereruptions and associated environmental, biological, and climatological events. Journal of the Geological Society, London, 170, 711–714.Google Scholar

  • Siddaiah, N.S., and Kumar, K. (2008) Tonsteins (altered volcanic ash) from Late Paleocene (∼58.7–55.8 Ma) sediments of the Northwest Sub-Himalaya and their significance for the timing of initiation of India-Asia Collision. Memoir Geological Society of India 72, pp. 145–164.Google Scholar

  • Simas, M.W., Guerra-Sommer, M., Mendonça Filho, J.G., Cazzulo-Klepzig, M., Formoso, M.L.L., and Degani-Schmidt, I. (2013) An accurate record of volcanic ash fall deposition as characterized by dispersed organic matter in a lower Permian tonstein layer (Faxinal Coalfield, Paraná Basin, Brazil). Geologica Acta, 11, 45–57.Google Scholar

  • Sliaupa, S. (2000) Ordovician-Silurian metabentonites in the Baltic basin: A record of surrounding Caledonian volcanic activity. Geophysical Journal, 22, 128–129.Google Scholar

  • Smiley, T. (1985) The geology and climate of an indigenous forest, Petrified Forest National Park, Arizona. Bulletin of the Museum of Northern Arizona, 54, 9–15.Google Scholar

  • Spears, D.A. (2012) The origin of tonsteins, an overview, and links with seatearths, fireclays and fragmental clay rocks. International Journal of Coal Geology, 94, 22–31.Google Scholar

  • Spears, D.A., and Duff, P.M.D. (1984) Kaolinite and mixed-layer illite-smectite in Lower Cretaceous bentonites from the Peace River coalfield, British Columbia. Canadian Journal of Earth Sciences 21, 465–476.Google Scholar

  • Środoń, J., Clauer, N., Huff, W., Dudek, T., and Banaś, M. (2009) K-Ar dating of the Lower Palaeozoic K-bentonites from the Baltic Basin and the Baltic Shield: Implications for the role of temperature and time in the illitization of smectite. Clay Minerals, 44, 361–387.Google Scholar

  • Środoń, J., Paszkowski, M., Drygant, D., Anczkiewicz, A., and Banaś, M. (2013) Thermal history of Lower Paleozoic rocks on the peri-Tornquist margin of the east European craton (Podolia, Ukraine) inferred from combined XRD, K-Ar, and AFT data. Clays and Clay Minerals, 61, 107–132.Google Scholar

  • Stanley, R.S., and Ratcliffe, N.M. (1985) Tectonic synthesis of the Taconian orogeny in western New England. Geological Society of America Bulletin, 96, 1227–1250.Google Scholar

  • Strauss, P.G. (1971) Kaolin-rich rocks in the East Midlands Coalfields of England. Proceedings 6th International Congress on Carboniferous Stratigraphy and Geology, 4, 1519–1533.Google Scholar

  • Su, W.-B., He, L.-Q., Baum, G.R., Huff, W.D., and Li, Z.-M. (2004) K-bentonites near the Ordovician-Silurian boundary in South China: Contributing factors to the terminal Ordovician multiple-sphere crises? Florence, Italy, International Geological Congress, 32nd, Abstracts Volume, 989.Google Scholar

  • Su, W.-B., Zhang, S., Huff, W.D., Li, H., Ettensohn, F.R., Chen, X., Yang, H., Han, Y., Song, B., and Santosh, M. (2008) SHRIMP U–Pb ages of K-bentonite beds in the Xiamaling Formation: Implications for revised subdivision of the Mesoto Neoproterozoic history of the North China Craton. Gondwana Research, 14, 543–553.Google Scholar

  • Su, W.-B., Huff, W.D., Ettensohn, F.R., Liu, X., Zhang, J.E., and Li, Z. (2009) K-bentonite, black-shale and flysch successions at the Ordovician–Silurian transition, South China: possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana. Gondwana Research, 15, 111–130.Google Scholar

  • Sylvest, N.E., Borell, A.M., Brafford, J.A., Haneberg-Diggs, D., Huff, W.D., Huvaj, Y.N., Maynard, J.B., and Wasserstrom, L.W. (2012) Coeval Permian Bentonites in Brazil and South Africa. Geological Society of America Abstracts with Programs, 44(7), 562.Google Scholar

  • Thomas, W.A., and Astini, R.A. (1996) The Argentine Precordillera: A traveler from the Ouachita embayment of North American Laurentia. Science, 273, 752–757.Google Scholar

  • Thompson, J.E., and Duff, P.G. (1965) Bentonite in the Upper Permian Black Alley Shale Bowen Basin, Queensland. Bureau of Mineral Resources, Geology and Geophysics Report 171, 11p.Google Scholar

  • Thorarinsson, S. (1944) Tefrokronoliska studier på Island. (Tephrochronological studies in Iceland). Geografiska Annaler, 26, 1–217.Google Scholar

  • Tomczyk, H. (1970) The Silurian. In S. Sokolowski, Ed., The Geology of Poland, 1, p. 237–320. Wydawnictwa Geologiczne, Warsaw.Google Scholar

  • Trewin, N.H., MacDonald, D.I.M., and Thomas, C.G.C. (2002) Stratigraphy and sedimentology of the Permian of the Falkland Islands: Lithostratigraphic and palaeoenvironmental links with South Africa. Journal of the Geological Society, London, 159, 5–19.Google Scholar

  • Triplehorn, D.M. (1990) Applications of tonsteins to coal geology: Some examples from western U.S. International Journal of Coal Geology, 16, 157–160.Google Scholar

  • Triplehorn, D.M., Turner, D.L., and Naeser, C.W. (1984) Radiometric age of the Chickaloon Formation of south central Alaska; Location of the Paleocene-Eocene boundary. Geological Society of America Bulletin 95, 640–742.Google Scholar

  • Tsegelnjuk, P.D. (1980a) The Rukshin and Tsyganka Series (the Upper Silurian-Lower Devonian) of Podolia and Volyn. Institute of Geology, Academy of Sciences of the Ukrainian SSR, Kiev, 55.Google Scholar

  • Tsegelnjuk, P.D. (1980b) The Yaruga and Malinovtsy Series (the Lower-Upper Silurian) of Podolia and Volyn. Institute of Geology, Academy of Sciences of the Ukrainian SSR, Kiev, 53.Google Scholar

  • Tucker, R.D., and Robinson, P. (1990) Age and setting of the Bronson Hill magmatic arc: A re-evaluation based on U-Pb zircon ages in southern New England. Geological Society of America Bulletin, 102, 1404–1419.Google Scholar

  • Ulrich, E.O. (1888) Correlation of the Lower Silurian horizons of Tennessee and of the Ohio and Mississippi valleys with those of New York and Canada. American Geologist, 1, 100–110.Google Scholar

  • Uysal, I.T., Suzanne D. Golding, S.D., and Audsley, F. (2000) Clay-mineral authigenesis in the Late Permian coal measures, Bowen Basin, Queensland, Australia. Clays and Clay Minerals, 48, 351–365.Google Scholar

  • Ver Straeten, C.A. (2004) K-bentonites, volcanic ash preservation, and implications for Early to Middle Devonian volcanism in the Acadian orogen, eastern North America. Geological Society of America Bulletin, 116, 474–489.Google Scholar

  • Weaver, C.E. (1953) Mineralogy and petrology of some Ordovician K-bentonites and related limestones. Bulletin of the Geological Society of America 64, 921–944.Google Scholar

  • Weaver, C.E. (1989) Clays, Muds and Shales. Developments in Sedimentology 44. Elsevier, Amsterdam, 819 p.Google Scholar

  • Weaver, B.L. (1991) Trace element evidence for the origin of ocean-island basalts. Geology, 19, 123–126.Google Scholar

  • Wilson, C.W. Jr. (1949) Pre-Chattanooga stratigraphy in central Tennessee. Tennessee Division of Geology, Bulletin, 56, 407 p.Google Scholar

  • Wilson, M., and Guiraud, R. (1998) Late Permian to recent magmatic activity on the African-Arabian margin of Tethys. In D.S. MacGregor, R.T.J. Moody, and D.D. Clark-Lowes, Eds., Petroleum Geology of North Africa. Geological Society of London, Special Publication 132, 231–263.Google Scholar

  • Wilson, R.F., and Stewart, J.H. (1967) Correlation of Upper Triassic and Triassic (?) formations between southwestern Utah and southern Nevada. U.S. Geological Survey Bulletin 1244-D, 20 p.Google Scholar

  • Winchester, J.A., and Floyd, P.A. (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325–343.Google Scholar

  • Zhang, J., Li, G., and Zhou, C. (1997) Geochemistry of light colour clayrock layers from the Early Cambrian Meishucun Stage in eastern Yunnan and their geological significance. Acta Petrologica Sinica, 13, 100–110 (in Chinese).Google Scholar

  • Zhou, Y., Bohor, B.F., and Ren, Y. (2000) Trace element geochemistry of altered volcanic ash layers (tonsteins) in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou Province, China. International Journal of Coal Geology, 44, 305–324.Google Scholar

  • Zhou, M., Luo, T., Li, Z., Zhao, H., Long, H., and Yang, Y. (2008) SHRIMP U-Pb zircon age of tuff at the bottom of the Lower Cambrian Niutitang Formation, Zunyi, South China. Chinese Science Bulletin, 53(4), 576–583.Google Scholar

  • Zhou, M., Luo, T., Liu, S., Qian, Z., and Xing, L. (2013) SHRIMP zircon age for a K-bentonite in the top of the Laobao Formation at the Pingyin section, Guizhou, South China. Science China: Earth Sciences, 56, 1677–1687.Google Scholar

  • Zhou, M., Luo, T., Huff, W.D., and Liu, S. (2014) Prominent Lower Cambrian Kbentonites in South China: Distribution, mineralogy, and geochemistry. Journal of Sedimentary Research, 84, 842–853.Google Scholar

About the article

Received: 2015-03-01

Accepted: 2015-06-23

Published Online: 2016-01-09

Published in Print: 2016-01-01


Manuscript handled by Richard April.


Citation Information: American Mineralogist, Volume 101, Issue 1, Pages 43–70, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5339.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in