Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

See all formats and pricing
More options …
Volume 101, Issue 1


Pathways for nitrogen cycling in Earth's crust and upper mantle: A review and new results for microporous beryl and cordierite

Gray E. Bebout
  • Corresponding author
  • Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, U.S.A.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kris E. Lazzeri / Charles A. Geiger
  • Department of Materials Science and Physics, Section Mineralogy, Salzburg University, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-09 | DOI: https://doi.org/10.2138/am-2016-5363


Earth's atmosphere contains 27–30% of the planet's nitrogen and recent estimates are that about one-half that amount (11–16%) is located in the continental and oceanic crust combined. The percentage of N in the mantle is more difficult to estimate, but it is thought to be near 60%, at very low concentrations. Knowledge of the behavior of N in various fluid-melt-rock settings is key to understanding pathways for its transfer among the major solid Earth reservoirs.

Nitrogen initially bound into various organic materials is transferred into silicate minerals during burial and metamorphism, often as NH4+ substituting for K+ in layer silicates (clays and micas) and feldspars. Low-grade metamorphic rocks appear to retain much of this initial organic N signature, in both concentrations and isotopic compositions, thus in some cases providing a relatively un- or little-modified record of ancient biogeochemical cycling. Devolatilization can release significant fractions of the N initially fixed in crustal rocks through organic diagenesis, during progressive metamorphism at temperatures of ∼350–550 °C (depending on pressure). Loss of fractionated N during devolatilization can impart an appreciable isotopic signature on the residual rocks, producing shifts in δ15N values mostly in the range of +2 to +5‰. These rocks then retain large fractions of the remaining N largely as NH4+, despite further heating and ultimately partial melting, with little additional change in δ15N. This retention leads to the storage of relatively large amounts of N, largely as NH4+, in the continental crust. Nitrogen can serve as a tracer of the mobility of organic-sedimentary components into and within the upper mantle.

This contribution focuses on our growing, but still fragmentary, knowledge of the N pathways into shallow to deep continental crustal settings and the upper mantle. We discuss the factors controlling the return of deeply subducted N to shallower reservoirs, including the atmosphere, via metamorphic devolatilization and arc magmatism. We discuss observations from natural rock suites providing tests of calculated mineral-fluid fractionation factors for N. Building on our discussion of N behavior in continental crust, we present new measurements on the N concentrations and isotopic compositions of microporous beryl and cordierite from medium- and high-grade metamorphic rocks and pegmatites, both phases containing molecular N2, and NH4+-bearing micas coexisting with them. We suggest some avenues of investigation that could be particularly fruitful toward obtaining a better understanding of the key N reservoirs and the more important pathways for N cycling in the solid Earth.

Keywords: Nitrogen cycling; nitrogen isotopes; ammonium; microporous silicate; isotope fractionation; layer silicates; cordierite; Review article; Invited Centennial article

References cited

  • Ader, M., Boudou, J.-P., Javoy, M., Goffe, B., and Daniels, E. (1998) Isotope study on organic nitrogen of Westphalian anthracites from the Western Middle field of Pennsylvania (U.S.A.) and from the Bramsche Massif (Germany). Organic Geochemistry, 29, 315–328.Google Scholar

  • Ader, M., Cartigny, P., Boudou, J.P., Oh, J.H., Petit, E., and Javoy, M. (2006) Nitrogen isotopic evolution of carbonaceous matter during metamorphism: Methodology and preliminary results. Chemical Geology, 232, 152–169.Google Scholar

  • Andersen, T.,Austrheim, H., and Burke, E.A.J. (1990) Fluid inclusions in granulites and eclogites from the Bergen Arcs, Caledonides of Western Norway. Mineralogical Magazine, 54, 145–158.Google Scholar

  • Andersen, T., Austrheim, H., Burke, E.A., and Elvevold, S. (1993) N2 and CO2 in deep crustal fluids: Evidence from the Caledonides of Norway. Chemical Geology, 108, 113–132.Google Scholar

  • Armbruster, T. (1985) Ar, N2 and CO2 in the structural cavities of cordierite, an optical and X-ray single crystal study. Physics and Chemistry of Minerals, 12, 233–245.Google Scholar

  • Armbruster, T. (1986) Role of Na in the structure of low-cordierite: A single-crystal X-ray study. American Mineralogist, 71, 746–757.Google Scholar

  • Bach, W., Naumann, D., and Erzinger, J. (1999) A helium, argon, and nitrogen record of the upper continental crust (KTB drill holes, Oberpfalz, Germany): implications for crustal degassing. Chemical Geology, 160, 81–101.Google Scholar

  • Bakker, R.M., and Jansen, J.B.H. (1993) Calculated fluid evolution path versus fluid inclusion data in the COHN system as exemplified by metamorphic rocks from Rogaland, southwest Norway. Journal of Metamorphic Geology, 11, 357–370.Google Scholar

  • Barker, D.S. (1964)Ammonium in alkali feldspar.American Mineralogist, 49, 851–858.Google Scholar

  • Bebout, G.E. (1997) Nitrogen isotope tracers of high-temperature fluid-rock interactions: case study of the Catalina Schist, California. Earth and Planetary Science Letters, 151, 77–90.Google Scholar

  • Bebout, G.E. (2007) Metamorphic chemical geodynamics of subduction zones. Earth and Planetary Science Letters, 260, 373–393.Google Scholar

  • Bebout, G.E., and Barton, M.D. (1993) Metasomatism during subduction: products and possible paths in the Catalina Schist, California. Chemical Geology, 108, 61–92.Google Scholar

  • Bebout, G.E., and Fogel, M.L. (1992) Nitrogen-isotope compositions of metasedimentary rocks in the Catalina Schist, California—Implications for metamorphicdevolatilization history. Geochimica et Cosmochimica Acta, 56, 2839–2849.Google Scholar

  • Bebout, G.E., and Nakamura, E. (2003) Record in metamorphic tourmalines of subduction zone devolatilization and boron cycling. Geology, 31, 407–410.Google Scholar

  • Bebout, G.E., and Sadofsky, S.J. (2004) δ15N analyses of ammonium-rich silicate minerals by sealed-tube extractions and dual inlet, viscous-flow mass spectrometry. In P. de Groot, Ed., Handbook of Stable Isotope Techniques, p. 348–360. Elsevier, Amsterdam.Google Scholar

  • Bebout, G.E., Cooper, D.C., Bradley,A.D., and Sadofsky, S.J. (1999a) Nitrogen-isotope record of fluid rock interactions in the Skiddaw Aureole and granite, English Lake District. American Mineralogist, 84, 1495–1505.Google Scholar

  • Bebout, G.E., Ryan, J.G., Leeman, W.P., and Bebout, A.E. (1999b) Fractionation of trace elements by subduction-zone metamorphism—effect of convergent-margin thermal evolution. Earth and Planetary Science Letters, 171, 63–81.Google Scholar

  • Bebout, G.E., Idleman, B.D., Li, L., and Hilkert, A. (2007) Isotope-ratio-monitoring gas chromatography methods for high-precision isotopic analysis of nanomole quantities of silicate nitrogen. Chemical Geology, 240, 1–10.Google Scholar

  • Bebout, G.E., Agard, P., Kobayashi, K., Moriguti, T., and Nakamura, E. (2013a) Devolatilization history and trace element mobility in deeply subducted sedimentary rocks: Evidence from Western Alps HP/UHP suites. Chemical Geology, 342, 1–20.Google Scholar

  • Bebout, G.E., Fogel, M.L., and Cartigny, P. (2013b) Nitrogen: Highly volatile yet surprisingly compatible. Elements, 9, 333–338.Google Scholar

  • Bebout, G.E., Banerjee, N.R., Izawa, M.R.M., Lazzeri, K.E., Kobayashi, K., and Nakamura, E. (2015) Enrichment of sedimentary/organic nitrogen in altered terrestrial glassy basaltic rocks: Possible implications for astrobiology. Astrobiology Science Conference, Chicago, June, 2015.Google Scholar

  • Beinlich, A., Klemd, R., John, T., and Gao, J. (2010) Trace-element mobilization during Ca-metasomatism along a major fluid conduit: Eclogitization of blueschist as a consequence of fluid-rock interaction. Geochimica et Cosmochimica Acta, 74, 1892–1922.Google Scholar

  • Bobos, I., and Eberl, D.D. (2013) Thickness distributions and evolution of growth mechanisms of NH4-illite from the fossil hydrothermal system of Harghita Bãi, Eastern Carpathians, Romania. Clays and Clay Minerals, 61, 375–391.Google Scholar

  • Bos, A., Duit, W., van Der Eerden, M.J., and Jansen, B. (1988) Nitrogen storage in biotite: An experimental study of the ammonium and potassium partitioning between 1 Mphlogopite and vapour at 2 kb. Geochimica et Cosmochimica Acta, 52, 1275–1283.Google Scholar

  • Bottrell, S.H., Carr, L.P., and Dubessy, J. (1988) A nitrogen-rich metamorphic fluid and coexisting minerals in slates from North Wales. Mineralogical Magazine, 52, 451–457.Google Scholar

  • Boudou, J.-P., Schimmelmann,A.,Ader, M., Mastalerz, M., Sebilo, M., and Gengembre, L. (2008) Organic nitrogen chemistry during low-grade metamorphism. Geochimica et Cosmochimica Acta, 72, 1199–1221.Google Scholar

  • Boyd, S.R. (1997) Determination of the ammonium content of potassic rocks by capacitance manometry: a prelude to the calibration of FTIR microscopes. Chemical Geology, 137, 57–66.Google Scholar

  • Boyd, S.R. (2001) Nitrogen in future biosphere studies. Chemical Geology, 176, 1–30.Google Scholar

  • Boyd, S.R., Hall,A., and Pillinger, C.T. (1993) The measurement of δ15N in crustal rocks by static vacuum mass spectrometry: Application to the origin of the ammonium in the Cornubian batholith, southwest England. Geochimica et Cosmochimica Acta, 57, 1339–1347.Google Scholar

  • Bräuer, K., and Hahne, K. (2005) Methodical aspects of the 15N-analysis of Precambrian and Palaeozoic sediments rich in organic matter. Chemical Geology, 218, 361–368.Google Scholar

  • Bul’bak, T.A., and Shvedenkov, G.Y. (2005) Experimental study on incorporation of C-H-O-N fluid components in Mg-cordierite. European Journal of Mineralogy, 17, 829–838.Google Scholar

  • Busigny, V., and Bebout, G.E. (2013) Nitrogen in the silicate Earth: Speciation and isotopic behavior during mineral–fluid interactions. Elements, 9, 353–358.Google Scholar

  • Busigny, V., Cartigny, P., Philippot, P.,Ader, M., and Javoy, M. (2003) Massive recycling of nitrogen and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: evidence from HP to UHP oceanic metasediments of the Schistes Lustres nappe (western Alps, Europe). Earth and Planetary Science Letters, 215, 27–42.Google Scholar

  • Busigny, V., Cartigny, P., Philippot, P., and Javoy, M. (2004) Quantitative analysis of ammonium in biotite using infrared spectroscopy. American Mineralogist, 89, 1625–1630.Google Scholar

  • Busigny, V., Ader, M., and Cartigny, P. (2005a) Quantification and isotopic analysis of nitrogen in rocks at the ppm level using tube combustion technique: A prelude to the study of altered oceanic crust. Chemical Geology, 223, 249258.Google Scholar

  • Busigny, V., Laverne, C., and Bonifacie, M. (2005b) Nitrogen content and isotopic composition of oceanic crust at a superfast spreading ridge: A profile in altered basalts from ODP Site 1256, Leg 206. Geochemistry, Geophysics, Geosystems, 6, http://dx.doi.org/10.1029/2005GC001020.

  • Busigny, V., Cartigny, P., and Philippot, P. (2011) Nitrogen isotopes in ophiolitic metagabbros:Areevaluation of modern nitrogen fluxes in subduction zones and implication for the early Earth atmosphere. Geochimica et Cosmochimica Acta, 75, 7502–7521.Google Scholar

  • Cartigny, P. (2005) Stable isotopes and the origin of diamond. Elements, 1, 79–84.Google Scholar

  • Cartigny, P., and Marty, B. (2013) Nitrogen isotopes and mantle geodynamics: The emergence of life and the atmosphere-crust-mantle connection. Elements, 9, 359–366.Google Scholar

  • Cartigny, P., De Corte, K., Shatsky, V.S., Ader, M., De Paepe, P., Sobolev, N.V., and Javoy, M. (2001) The origin and formation of metamorphic microdiamonds from the Kokchetav massif, Kazakhstan: a nitrogen and carbon isotopic study. Chemical Geology, 176, 265–281.Google Scholar

  • Cartigny, P., Busigny, V., and Rudnick, R. (2013) Re-investigating the nitrogen budget in the upper continental crust. Goldschmidt Conference Abstracts, p. 835.Google Scholar

  • Clarke, D.B. (1995) Cordierite in felsic igneous rocks: A synthesis. Mineralogical Magazine, 59, 311–325.Google Scholar

  • Cockell, C.S., van Calsteren, P., Mosselmans, J.F.W., Franchi, I.A., Gilmour, I., Kelly, L., Olsson-Francis, K., Johnson, D., and the JC24 Shipboard Scientific Party (2010) Microbial endolithic colonization and the geochemical environment in young seafloor basalts. Chemical Geology, 279, 17–30.Google Scholar

  • Collins, N.C., Bebout, G.E., Angiboust, S., Agard, P., Scambelluri, M., Crispini, L., and John, T. (2015) Subduction zone metamorphic pathway for deep carbon cycling: II. Evidence from HP/UHP metabasaltic rocks and ophicarbonates. Chemical Geology, 412, 132–150.Google Scholar

  • Cook-Kollars, J., Bebout, G.E., Collins, N.C., Angiboust, S., and Agard, P. (2014) Subduction zone metamorphic pathway for deep carbon cycling: I. Evidence from HP/UHP metasedimentary rocks, Italian Alps. Chemical Geology, 386, 31–48.Google Scholar

  • Damon, P.E., and Kulp, J.L. (1958) Excess helium and argon in beryl and other minerals. American Mineralogist, 43, 433–459.Google Scholar

  • Darimont,A., Burke, E., and Touret, J. (1988) Nitrogen-rich metamorphic fluids in Devonian metasediments from Bastogne, Belgium. Bulletin Mineralogie, 111, 321–330.Google Scholar

  • Dobrzhinetskaya, L.F., Wirth, R., Yang, J., Hutcheon, I.D., Weber, P.K., and Green, H.W. (2009) High pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proceedings of the National Academy of Sciences, 106, 19233–19238.Google Scholar

  • Duit, W., Jansen, J.B.H., van Breeman, A., and Bos, A. (1986) Ammonium micas in metamorphic rocks as exemplified by Dome de L’Agout (France).American Journal of Science, 286, 702–732.Google Scholar

  • Elkins, L.J., Fischer, T.P., Hilton, D.R., Sharp, Z.D., McKnight, S., and Walker, J. (2006) Tracing nitrogen in volcanic and geothermal volatiles from the Nicaraguan volcanic front. Geochimica et Cosmochimica Acta, 70, 5215–5235.Google Scholar

  • Erd, R.C., White, D.E., Fahey, J.J., and Lee, D.E. (1964) Buddingtonite, an ammonium feldspar with zeolitic water. American Mineralogist, 49, 831–850.Google Scholar

  • Eugster, H.P., and Munoz, J. (1966)Ammonium micas: possible sources of atmospheric ammonia and nitrogen. Science, 151, 683–686.Google Scholar

  • Facq, S., Daniel, I., Montagnac, G., Cardon, H., and Sverjensky, D.A. (2014) In situ Raman study and thermodynamic model of aqueous carbonate speciation in equilibrium with aragonite under subduction zone conditions. Geochimica et Cosmochimica Acta, 132, 375–390.Google Scholar

  • Fischer, T. (2008) Fluxes of volatiles (H2O, CO2, N2, Cl, F) from arc volcanoes. Geochemical Journal, 42, 21–38.Google Scholar

  • Galloway, J.N. (2003) The global nitrogen cycle. In Treatise on Geochemistry, chapter 8.12, p. 557–583. Elsevier, Amsterdam.Google Scholar

  • Goldblatt, C., Claire, M.W., Lenton, T.M., Matthews, A.J., Watson, A.J., and Zahnle, K.J. (2009) Nitrogen enhanced greenhouse warming on early Earth. Nature Geoscience, 2, 891–896.Google Scholar

  • Grove, M., and Bebout, G.E. (1995) Cretaceous tectonic evolution of coastal southern California: insights from the Catalina Schist. Tectonics, 14, 1290–1308.Google Scholar

  • Haendel, D., Mühle, K., Nitzsche, H., Stiehl, G., and Wand, U. (1986) Isotopic variations of the fixed nitrogen in metamorphic rocks. Geochimica et Cosmochimica Acta, 50, 749–758.Google Scholar

  • Halama, R., Bebout, G.E., John, T., and Schenk, V. (2010) Nitrogen recycling in subducted oceanic lithosphere: the record in highand ultrahigh-pressure metabasaltic rocks. Geochimica et Cosmochimica Acta, 74, 1636–1652.Google Scholar

  • Halama, R., Bebout, G.E., John, T., and Scambelluri, M. (2012) Nitrogen recycling in subducted mantle rocks and implications for the global nitrogen cycle. International Journal of Earth Sciences, http://dx.doi.org/10.1007/s00531-012-0782-3.

  • Halama, R., Bebout, G., John, T., Magna, T., and Seitz, M. (2009) Behavior of nitrogen and its isotopes during high-pressure fluid-driven metasomatic processes: A case study from the Tian Shan, China. Invited paper, Abstracts of the 19th Goldschmidt Conference, Davos, Switzerland.

  • Hall, A. (1999) Ammonium in granites and its petrogenetic significance. Earth-Science Reviews, 45, 145–165.Google Scholar

  • Hall, A., Pereira, M.D., and Bea, F. (1996) The abundance of ammonium in the granites of central Spain, and the behaviour of the ammonium ion during anatexis and fractional crystallization. Mineralogy and Petrology, 56, 105–123.Google Scholar

  • Hanschmann, G. (1981) Berechnung von isotopieeffekten auf quantenchmischer grundlage am beispiel stickstoff fhaltiger moleküle. ZFI-Mitteilungen, 41, 19–39.Google Scholar

  • Hashizume, K., and Marty, B.(2005) Nitrogen isotopic analyses at the sub-picomole level using an ultra-low blank laser extraction technique. In P. de Groot, Ed., Handbook of Stable Isotope Analytical Techniques. Elsevier, Amsterdam.Google Scholar

  • Heinrich, E.W. (1950) Cordierite in pegmatite near Micanite, Colorado. American Mineralogist, 35, 173–184.Google Scholar

  • Hervig, R.L., Fudge, C., and Navrotsky,A. (2014)Analyzing nitrogen in cordierites and other phases by SIMS. Goldschmidt Conference abstract 982.Google Scholar

  • Higashi, S. (1982) Tobelite, a new ammonium dioctahedral mica. Mineralogical Journal, 11, 138–146.Google Scholar

  • Hilton, D.R., Fischer, T.P., and Marty, B. (2002) Noble gases and volatile recycling at subduction zones. Reviews in Mineralogy and Geochemistry, 47, 319–370.Google Scholar

  • Holloway, J.M., and Dahlgren, R.A. (2002) Nitrogen in rock: Occurrences and biogeochemical implications. Global Biogeochemical Cycles, 16, http://dx.doi. org/10.1029/2002GB001862.

  • Honma, H., and Itihara,Y. (1981) Distribution of ammonium in minerals of metamorphic and granitic rocks. Geochimica et Cosmochimica Acta, 45, 983–988.Google Scholar

  • Javoy, M. (1997) The major volatile elements of the Earth: their origin, behavior, and fate. Geophysical Research Letters, 24, 177–180.Google Scholar

  • Jenden, P.D., Kaplan, I.R., Poreda, R.J., and Craig, H. (1988) Origin of nitrogen-rich natural gases in the California Great Valley: Evidence from helium, carbon, and nitrogen isotope ratios. Geochimica et Cosmochimica Acta, 52, 851–861.Google Scholar

  • Jia, Y.F. (2006) Nitrogen isotope fractionations during progressive metamorphism: A case study from the Paleozoic Cooma metasedimentary complex, southeastern Australia. Geochimica et Cosmochimica Acta, 70, 5201–5214.Google Scholar

  • Jia, Y., Kerrich, R., and Goldfarb, R. (2003) Metamorphic origin of ore-forming fluids for orogenic gold-bearing quartz vein systems in the North American Cordillera: Constraints from a reconnaissance study of δ15N, δD, and δ18O. Economic Geology, 98, 109–123.Google Scholar

  • John, T., Gussone, N., Podladchikov, Y.Y., Bebout, G.E., Dohmen, R., Halama, R., Klemd, R., Magna, T., and Seitz, M. (2012) Pulsed long-distance fluid flow through subducting slabs feeds volcanic arcs. Nature Geoscience, http://dx.doi.org/10.1038/NGEO1482.

  • Johnson, B., and Goldblatt, C. (2015) The nitrogen budget of Earth. Earth-Science Reviews, 148, 150–173, http://dx.doi.org/10.1016/j.earscirev.2015.05.006.

  • Junge, F., Seltmann, R., and Stiehl, G. (1989) Nitrogen isotope characteristics of breccias, granitoids, and greisens from eastern Erzgebirge tin ore deposits (Sadisdorf: Altenberg), GDR. Proceedings of the 5th Working Meeting, Isotopes in Nature, Leipzig, September, p. 321–332.Google Scholar

  • Kalt, A., Altherr, R., and Ludwig, T. (1998) Contact metamorphism in pelitic rocks on the island of Kos (Greece, Eastern Aegean Sea): a test for the Na-in-cordierite thermometer. Journal of Petrology, 39, 663–688.Google Scholar

  • Kerrich, R., Jia, Y., Manikyamba, C., and Naqvi, S.M. (2006) Secular variations of Nisotopes in terrestrial reservoirs and ore deposits. In S.E. Kesler and H. Ohmoto, Eds., Evolution of Early Earth’s Atmosphere, Hydrosphere, and Biosphere—Constraints from ore deposits. Geological Society of America Memoir, 198, 81–104.Google Scholar

  • Kolesov, B.A., and Geiger, C.A. (2000) Cordierite II: The role of CO2 and H2O.American Mineralogist, 85, 1265–1274.Google Scholar

  • Kreulen, R., and Schuiling, R.D. (1982) N2-CH4-CO2 fluids during formation of the Dome de l’Agout, France. Geochimica et Cosmochimica Acta, 46, 193–203.Google Scholar

  • Kreulen, R., van Breeman, A., and Duit, W. (1982) Nitrogen and carbon isotopes in metamorphic fluids from the Dome de L’Agout, France. Proceedings of the 5th International Conference for Geochronology, Cosmochronology, and Isotope Geology, p. 191.Google Scholar

  • Krohn, M.D., Kendall, C., Evans, J.R., and Fries, T.L. (1993) Relations of ammonium minerals at several hydrothermal systems in the western U.S. Journal of Volcanology and Geothermal Research, 4, 401–413.Google Scholar

  • Krooss, B.M., Friberg, L., Gensterblum, Y., Hollenstein, J., Prinz, D., and Littke, R. (2005) Investigation of the pyrolytic liberation of molecular nitrogen form Paleeozoic sedimentary rocks. International Journal of Earth Sciences, 94, 1023–1038.Google Scholar

  • Lazzeri, K.E. (2012) Storage of nitrogen in silicate minerals and glasses. M.S. thesis, Lehigh University, 76 pp.Google Scholar

  • Lepezin, G.G., Bul’bak, T.A., Sokol, E.V., and Shvedenkov, G.Y. (1999) Fluid components in cordierites and their significance for metamorphic petrology. Russian Geology and Geophysics, 40, 99–116.Google Scholar

  • Li, Y., and Keppler, H. (2014) Nitrogen speciation in mantle and crustal fluids. Geochimica et Cosmochimica Acta, 129, 13–32.Google Scholar

  • Li, L., Bebout, G.E., and Idleman, B.D. (2007) Nitrogen concentration and δ15N of altered oceanic crust obtained on ODP Legs 129 and 185: Insights into alterationrelated nitrogen enrichment and the nitrogen subduction budget. Geochimica et Cosmochimica Acta, 71, 2344–2360.Google Scholar

  • Li, L., Cartigny, P., and Ader, M. (2009) Kinetic nitrogen isotope fractionation associated with thermal decomposition of NH3: Experimental results and potential applications to trace the origin of N2 in natural gas and hydrothermal systems. Geochimica et Cosmochimica Acta, 73, 6282–6297.Google Scholar

  • Li, L., Zheng, Y.-F., Cartigny, P., and Li, J. (2014) Anomalous nitrogen isotopes in ultrahigh-pressure metamorphic rocks from the Sulu orogenic belt: Effect of abiotic nitrogen reduction during fluid-rock interaction. Earth and Planetary Science Letters, 403, 67–78.Google Scholar

  • Libourel, G., Marty, B., and Humbert, F. (2003) Nitrogen solubility in basaltic melt. Part I. Effect of oxygen fugacity. Geochimica et Cosmochimica Acta, 67, 4123–4135.Google Scholar

  • London, D., and Evensen, J.M. (2002) Beryllium in silicic magmas and the origin of beryl-bearing pegmatites. Reviews in Mineralogy and Geochemistry, 50, 445–486.Google Scholar

  • Mariotti, A. (1984) Natural 15N abundance measurements and atmospheric nitrogen standard calibration. Nature, 311, 251–252.Google Scholar

  • Marschall, H.R., Korsakov,A.V., Luvizotto, G.L., Nasdala, L., and Ludwig, T. (2009) On the occurrence and boron isotopic composition of tourmaline in (ultra)high-pressure metamorphic rocks. Journal of the Geological Society, London, 177, 811–823.Google Scholar

  • Mashkovtsev, R.I., and Solntsev, V.P. (2002) Channel constituents in synthetic beryl: ammonium. Physics and Chemistry of Minerals, 29, 65–71.Google Scholar

  • Mikhail, S., and Sverjensky, D.A. (2014) Nitrogen speciation in upper mantle fluids and the origin of Earth's nitrogen-rich atmosphere. Nature Geoscience, 7, http:// dx.doi.org/10.1038/NGEO2271.

  • Mingram, B., and Bräuer, K. (2001) Ammonium concentration and nitrogen isotope composition in metasedimentary rocks from different tectonometamorphic units of the European Variscan Belt. Geochimica et Cosmochimica Acta, 65, 273–287.Google Scholar

  • Mingram, B., Hoth, P., Luders, V., and Harlov, D. (2005) The significance of fixed ammonium in Palaeozoic sediments for the generation of nitrogen-rich natural gases in the North German Basin. International Journal of Earth Sciences, 94, 1010–1022.Google Scholar

  • Mitchell, E.C., Fischer, T.P., Hilton, D.R., Hauri, E.H., Shaw,A.M., de Moor, J.M., Sharp, Z.D., and Kazahaya, K. (2010) Nitrogen sources and recycling at subduction zones: insights from the IzuBoninMariana arc. Geochemistry, Geophysics, Geosystems, 11(2), doi.org/10.1029/2009GC002783.Google Scholar

  • Moine, B., Guillot, C., and Gibert, F. (1994) Controls on the composition of nitrogenrich fluids originating from reaction with graphite and ammonium-bearing biotite. Geochimica et Cosmochimica Acta, 58, 5503–5523.Google Scholar

  • Müller, E.P., May, F., and Stiehl, G. (1976) Zur Isotopengeochemie des Stickstoffs und zur Genese stickstoffreicher Erdgase. Zeitschrift für Angewandte Geologie, 22, 319–324.Google Scholar

  • Mysen, B., and Fogel, M.L. (2010) Nitrogen and hydrogen isotope compositions and solubility in silicate melts in equilibrium with reduced (N+H)-bearing fluids at high pressure and temperature: Effects of melt structure. American Mineralogist, 95, 987–999.Google Scholar

  • Ortega, L., Vendel, E., and Beny, C. (1991) C-O-H-N fluid inclusions associated with gold-stibnite mineralization in low-grade metamorphic rocks, Mari Rosa mine, Caceras, Spain. Mineralogical Magazine, 55, 235–247.Google Scholar

  • Palya, A.P., Buick, I.S., and Bebout, G.E. (2011) Storage and mobility of nitrogen in the continental crust: Evidence from partially melted metasedimentary rocks, Mt. Stafford, Australia. Chemical Geology, 281, 211–226.Google Scholar

  • Pan, D., Spanu, L., Harrison, B., Sverjensky, D.A., and Galli, G. (2013) Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth. Proceedings of the National Academy of Sciences, 110, 6646–6650.Google Scholar

  • Petts, D.C., Chacko, T., Stachel, T., Stern, R.A., and Heaman, L.M. (2015) A nitrogen isotope fractionation factor between diamond and its parental fluid derived from detailed SIMS analysis of a gem diamond and theoretical calculaitons. Chemical Geology, 410, 188–200.Google Scholar

  • Philippot, P., Busigny, V., Scambelluri, M., and Cartigny, P. (2007) Oxygen and nitrogen isotopes as tracers of fluid activities in serpentinites and metasediments during subduction. Mineralogy and Petrology, 91, 11–24.Google Scholar

  • Pinti, D.L., Hashizume, K., Orberger, B., Gallien, J.-P., Cloquet, C., and Massault, M. (2007) Biogenic nitrogen and carbon in Fe-Mn-oxyhydroxides from an Archean chert, Marble Bar, Western Australia. Geochemistry, Geophysics, Geosystems, 8, http://dx.doi.org/10.1029/2006GC001394.

  • Pitcairn, I.K., Teagle, D.A.H., Kerrich, R., Craw, D., and Brewer, T.S. (2005) The behavior of nitrogen and nitrogen isotopes during metamorphism and mineralization: Evidence from the Otago and Alpine Schists, New Zealand. Earth and Planetary Science Letters, 233, 229–246.Google Scholar

  • Plessen, B., Harlov, D.E., Henry, D., and Guidotti, C.V. (2010)Ammonium loss and nitrogen isotopic fractionation in biotite as a function of metamorphic grade in metapelites from western Maine, USA. Geochimica et Cosmochimica Acta, 74, 4759–4771.Google Scholar

  • Pöter, B., Gottschalk, M., and Heinrich, W. (2004) Experimental determination of the ammonium partitioning among muscovite, K-feldspar, and aqueous chloride solutions. Lithos, 74, 67–90.Google Scholar

  • Richet, P., Bottinga, Y., and Javoy, M. (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur and chlorine stable isotope fractionation among gaseous molecules. Annual Review of Earth and Planetary Sciences, 5, 65–110.Google Scholar

  • Roskosz, M., Mysen, B., and Cody, G.D. (2006) Dual speciation of nitrogen in silicate melts at high pressure and temperature: An experimental study. Geochimica et Cosmochimica Acta, 70, 2902–2918.Google Scholar

  • Roskosz, M., Bouhifd, M., Jephcoat, A., Marty, B., and Mysen, B. (2013) Nitrogen solubility in molten metal and silicate at high pressure and temperature. Geochimica et Cosmochimica Acta, 121, 15–28.Google Scholar

  • Rudnick, R.L., and Gao, A. (2014) Composition of the continental crust. In H.D. Holland and K.K. Turekian, Eds., Treatise on Geochemistry, 4, pp. 1–51. Elsevier, Amsterdam.Google Scholar

  • Ruiz Cruz, M.D., and Sanz de Galdeano, C. (2008) High-temperature ammonium white mica from the Betic Cordillera (Spain). American Mineralogist, 93, 977–987.Google Scholar

  • Sadofsky, S.J., and Bebout, G.E. (2000) Ammonium partitioning and nitrogen-isotope fractionation among coexisting micas during high-temperature fluid-rock interactions: examples from the New England Appalachians. Geochimica et Cosmochimica Acta, 64, 2835–2849.Google Scholar

  • Sadofsky, S.J., and Bebout, G.E. (2003) Record of forearc devolatilization in low-T, high-P/T metasedimentary suites: significance for models of convergent margin chemical cycling. Geochemistry, Geophysics, Geosystems, 4, 9003, http://dx.doi.org/10.1029/2002GC000412, 4.

  • Sadofsky, S.J., and Bebout, G.E. (2004) Nitrogen geochemistry of subducting sediments: new results from the Izu-Bonin-Mariana margin and insights regarding global N subduction. Geochemistry, Geophysics, Geosystems, 5, Q03I15, http://dx.doi.org/10.1029/2003GC000543.

  • Sano, Y., Takahata, N., Nishio, Y., Fischer, T.P., and Williams, S.N. (2001) Volcanic flux of nitrogen from the Earth. Chemical Geology, 171, 263–271.Google Scholar

  • Scalan, R.S. (1958) The isotopic composition, concentration, and chemical state of the nitrogen in igneous rocks. Ph.D. dissertation, University of Arkansas.Google Scholar

  • Schmidt, M.W., and Poli, S. (2014) Devolatilization during subduction. In R.L. Rudnick, Ed., Treatise on Geochemistry: The Crust, 2nd ed., 3, p. 669–701. Elsevier, Amsterdam.Google Scholar

  • Schreyer, W. (1965) Synthetische und natürliche Cordierit II. Die chemischen Zusammensetzung natürlicher Cordierite und ihre Abhängigkeit von den PTXBedingungen bei der Gesteinsbildung. Neues Jahrbuch für Mineralogie–Abhandlung,103, 35–79.Google Scholar

  • Schroeder, P.A., and McLain, A.A. (1998) Illite-smectites and the influence of burial diagenesis on the geochemical cycling of nitrogen. Clay Minerals, 33, 539–546.Google Scholar

  • Staudigel, H., Furnes, H., McLoughlin, N., Banerjee, N.R., Connell, L.B., and Templeton, A. (2008) 3.5 billions years of glass bioalteration: Volcanic rocks as a basis for microbial life? Earth-Science Reviews, 89, 156–176.Google Scholar

  • Svensen, H., Bebout, G.E., Kronz, A., Li, L., Planke, S., Chevallier, L., and Jamtveit, B. (2008) Nitrogen geochemistry as a tracer of fluid flow in a hydrothermal vent complex in the Karoo Basin, South Africa. Geochimica et Cosmochimica Acta, 72, 4929–4947.Google Scholar

  • Sverjensky, D.A., Stagno, V., and Huang, F. (2014) Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nature Geoscience, 7, 909–913.Google Scholar

  • Thomazo, C., and Papineau, D. (2013) Biogeochemical cycling of nitrogen on the early Earth. Elements, 9, 345–352.Google Scholar

  • Thomazo, C., Ader, M., and Philippot, P. (2011) Extreme 15N-enrichments in 2.72-Gyrold sediments: Evidence for a turning point in the nitrogen cycle. Geobiology, 9, 107–120.Google Scholar

  • Tolstikihn, I.N., and Marty, B. (1998) The evolution of terrestrial volatiles: a view from helium, neon, argon and nitrogen isotope modeling. Chemical Geology, 147, 27–52.Google Scholar

  • Touret, J.L.R. (2001) Fluids in metamorphic rocks. Lithos, 55, 1–25.Google Scholar

  • van Hinsberg, V.J., Henry, D.J., and Dutrow, B.L. (2011) Tourmaline as a petrologic forensic mineral: A unique recorder of its geologic past. Elements, 7, 327–332.Google Scholar

  • Vernon, R.H., Clarke, G.L., and Collins, W.J. (1990) Local, mid-crustal granulite facies metamorphism and melting: an example in the Mt. Stafford area, central Australia. In J.R. Ashworth and M. Brown, Eds., High Temperature Metamorphism and Crustal Anatexis, p. 272–319. Unwin Hyman, London.Google Scholar

  • Visser, D. (1992) On ammonium in upper-amphibolite facies cordierite-orthoamphibolebearing rocks from Rod, Bamble Sector, south Norway. Norsk Geologisk Tiddskrift, 72, 385–388.Google Scholar

  • Vry, K.J., Brown, P.E., and Valley, J.W. (1990) Cordierite volatile content and the role of CO2 in high grade metamorphism. American Mineralogist, 75, 71–88.Google Scholar

  • Watenphul, A., Wunder, B., Wirth, R., and Heinrich, W. (2010) Ammonium-bearing clinopyroxene: A potential nitrogen reservoir in the Earth's mantle. Chemical Geology, 270, 240–248.Google Scholar

  • Watson, E.B., and Cherniak, D.J. (2014) Diffusion and solubility of nitrogen in olivine. Goldschmidt Conference Abstract 2664.Google Scholar

  • Wedepohl, H. (1995) The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 1217–1239.Google Scholar

  • White, R.W., Powell, R., and Clarke, G.I. (2003) Prograde metamorphic assemblage evolution during partial melting of metasedimentary rocks at low pressures: migmatites from Mt. Stafford, Central Australia. Journal of Petrology, 44, 1937–1960.Google Scholar

  • Williams, L.B., Ferrell, R.E. Jr., Chinn, E.W., and Sassen, R. (1989) Fixed-ammonium in clays associated with crude oils. Applied Geochemistry, 4, 605–616.Google Scholar

  • Williams, L.B., Ferrell, R.E. Jr., Hutcheon, I., Bakel,A.J., Walsh, M.M., and Krouse, H.R. (1995) Nitrogen isotope geochemistry oforganicmatterandmineralsduringdiagenesis and hydrocarbon migration. Geochimica et Cosmochimica Acta, 59, 765–779.Google Scholar

  • Wlotzka, F. (1972) Handbook of Geochemistry, vol. II. Springer-Verlag, Berlin.Google Scholar

  • Wunder, B., Berryman, E., Plessen, B., Rhede, D., Koch-Müller, M., and Heinrich, W. (2015) Synthetic and natural ammonium-bearing tourmaline. American Mineralogist, 100, 250–256.Google Scholar

  • Yokochi, R., Marty, B., Chazot, G., and Burnard, P. (2009) Nitrogen in peridotite xenoliths: Lithophile behavior and magmatic isotope fractionation. Geochimica et Cosmochimica Acta, 73, 4843–4861.Google Scholar

  • Zhang, Y., and Zindler, A. (1993) Distribution and evolution of carbon and nitrogen in Earth. Earth and Planetary Science Letters, 117, 331–345.Google Scholar

About the article

Received: 2015-03-23

Accepted: 2015-06-06

Published Online: 2016-01-09

Published in Print: 2016-01-01

Manuscript handled by Paul Tomascak.

Citation Information: American Mineralogist, Volume 101, Issue 1, Pages 7–24, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5363.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in