Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

See all formats and pricing
More options …
Volume 101, Issue 1


Safe long-term immobilization of heavy metals: Looking at natural rocks

Maarten A.T.M. Broekmans
  • Corresponding author
  • Department of Mineral Resources & Metals, Geological Survey of Norway—NGU, P.O. Box 6315 Sluppen, N-7491 Trondheim, Norway
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-09 | DOI: https://doi.org/10.2138/am-2016-5548


Portland cement clinker is primarily used in building and construction, with a global annual production of ∼4 billion tonnes. Part of it is also used for immobilization of hazardous materials (e.g., industrial slurries, harbor bottom sludge, shredded tires), notably those containing toxic metals like e.g., zinc, cadmium, barium (Trezza and Scian 2000). Limited amounts may be added to the raw meal and get incorporated into the clinker minerals upon burning (Taylor 1997), assuming they remain immobilized in the high-pH concrete or mortar environment after hydration and setting of the cement. Extensive laboratory tests seem to confirm effective mobilization, but are generally of limited duration for reason of practicality. Access to sample materials from centennia- or millennia-old structures is limited for reasons of cultural heritage preservation, and none of these structures were originally designed for environmental reasons. The paper by Khoury et al. (2016) analyzes uncommon combustion-metamorphic rocks from Jordan closely resembling cement-immobilized waste, exposed to supergene weathering and alteration over time spans far exceeding experimental practicality.

Keywords: Combustion metamorphism; impure chalk-marl; lime-monteponite series; portlandite; weathering; alteration; cadmium; immobilization

References cited

  • Alunno Rosetti, V., and Medici, I. (1995) Inertization of toxic metals in cement matrices: effects on hydration, setting and hardening. Cement & Concrete Research, 25, 1147–1152.Google Scholar

  • Asavapisit, S., Fowler, G., and Cheeseman, C.R. (1997) Solution chemistry during cement hydration in the presence of metal hydroxide wastes. Cement & Concrete Research, 27, 1249–1260.Google Scholar

  • Belebchouche, C., Moussaceb, K., Tahakourt, A., and Aït-Mokhtar, A. (2015) Parameters controlling the release of hazardous waste (Ni2+, Pb2+ and Cr3+) solidified/stabilized by cement-CEM I. Materials & Structures, 48, 2323–2338.Google Scholar

  • Deja, J. (2002) Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders. Cement & Concrete Research, 32, 1971–1979.Google Scholar

  • Elsen, J., Cizer, O., and Snellings, R. (2013) Lessons from a lost technology: the secrets of Roman concrete. American Mineralogist, 98, 1917–1918.Google Scholar

  • Halim, C.E., Amal, R., Beydoun, D., Scott, J.A., and Low, G. (2004) Implications of the structure of cementitious wastes containing Pb(II), Cd(II), As(V), and Cr(VI) on the leaching of metals. Cement & Concrete Research, 34/7, 1093–1102.Google Scholar

  • Hentschel, G. (1983) Die Mineralien der Eifelvulkane. Lapis Monographie, p.152. Verlag, München.Google Scholar

  • Hillier, S.R., Sangha, S.M., Plunket, B.A., and Walden, P.J. (1999) Long-term leaching of toxic trace metals from Portland cement concrete. Cement & Concrete Research, 29/4, 515–521.Google Scholar

  • Jackson, M.D., Chae, S.R., Mulcahy, S.R., Meral, C., Taylor, R., Li, P., Emwas, A.M., Moon, J., Yoon, S., Vola, G., Wenk, H.R., and Monteiro, P.J.M. (2013) Unlocking the secrets of Al-tobermorite in Roman seawater concrete. American Mineralogist, 98, 1669–1687.Google Scholar

  • Justnes, H. (2012) Alternative low-CO2 ‘green’ clinkering. Reviews in Mineralogy and Geochemistry, 74, 83–99.Google Scholar

  • Kakali, G., and Parissakis, G. (1995) Investigation of the effect of Zn oxide on the formation of Portland cement clinker. Cement & Concrete Research, 25/1, 79–85.Google Scholar

  • Khoury, H.N., Sokol, E.V., and Clark, I.D. (2015) Calcium uranium oxide minerals from Central Jordan: assemblages, chemistry, and alteration products. Canadian Mineralogist, 53, 61–82.Google Scholar

  • Khoury, H.N., Sokol, E.V., Kokh, S.N., Seryotkin, Y.V., Kozmenko, O.A., Goryainov, S.V., and Clark, I.D. (2016) Intermediate members of the limemonteponite solid solutions (Ca1–xCdxO, x = 0.36–0.55): Discovery in natural occurrence. American Mineralogist, 101, 146–161.Google Scholar

  • Pöllmann, H. (2010) Mineralisation of Wastes and Industrial Residues, p. 478. Shaker Verlag, Aachen.Google Scholar

  • Prodjosantoso, A.K., and Kennedy, B.J. (2003) Heavy metals in cement phases: on the solubility of Mg, Cd, Pb and Ba in Ca3Al2O6. Cement & Concrete Research, 33, 1077–1084.Google Scholar

  • Rankin, A.H., Miller, M.F., and Carter, J.S. (1987) The release of trace elements and volatiles from crinoidal limestone during thermal decripitation. Mineralogical Magazine, 51, 517–525.Google Scholar

  • Roy, D.M., and Langton, C.A. (1983) Characterization of cement-based ancient building materials in support of repository seal materials studies. Battelle Memorial Institute, Office of Nuclear Waste Isolation. BMI/ONWI-523, 146.Google Scholar

  • Shih, P.H., Chang, J.E., Lu, H.C., and Chiang, L.C. (2005) Reuse of heavy metalcontaining sludges in cement production. Cement & Concrete Research, 35, 2110–2115.Google Scholar

  • Sokol, E.V., and Kokh, S.N. (2010) Reflections on eternal flames. People & Environment, 92–111.Google Scholar

  • Sokol, E.V., Kokh, S.N., Vapnik, Y., Thiéry, V., and Korzhova, S.A. (2014) Natural analogs of belite sulfoaluminate cement clinkers from Negev Desert, Israel. American Mineralogist, 99, 1471–1487.Google Scholar

  • Sprung, S., and Rechenberg, W. (1988) Einbindung von Schwermetallen in Sekundärstoffen durch Verfestigen mit Zement. In G. Wischers, Ed., Betontechnische Berichte, p. 143–158. Forschungsinstitut der Zementindustrie, Düsseldorf.Google Scholar

  • Taylor, H.F.W. (1997) Cement Chemistry, 2nd ed., p. 459. Thomas Telford, London.Google Scholar

  • Trezza, M.A., and Scian, A.N. (2000) Burning wastes as an industrial resource: their effect on Portland cement clinker. Cement & Concrete Research, 30/1, 137–144.Google Scholar

About the article

Received: 2015-09-02

Accepted: 2015-09-09

Published Online: 2016-01-09

Published in Print: 2016-01-01

Manuscript handled by Keith Putirka.

Citation Information: American Mineralogist, Volume 101, Issue 1, Pages 3–4, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5548.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in