Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

See all formats and pricing
More options …
Volume 101, Issue 12


High-pressure compressibility and vibrational properties of (Ca,Mn)CO3

Jin Liu / Razvan Caracas
  • CNRS, Laboratoire de Géologie de Lyon, Université Claude Bernard Lyon 1, 69342 Lyon Cedex 07, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dawei Fan
  • Key Laboratory of High-temperature and High-pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550002, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ema Bobocioiu
  • CNRS, Laboratoire de Géologie de Lyon, Université Claude Bernard Lyon 1, 69342 Lyon Cedex 07, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dongzhou Zhang
  • Hawai’i Institute of Geophysics and Planetology, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wendy L. Mao
  • Department of Geological Sciences, Stanford University, Stanford, California 94305, United States of America
  • Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-30 | DOI: https://doi.org/10.2138/am-2016-5742


Knowledge of potential carbon carriers such as carbonates is critical for our understanding of the deep-carbon cycle and related geological processes within the planet. Here we investigated the high-pressure behavior of (Ca,Mn)CO3 up to 75 GPa by synchrotron single-crystal X-ray diffraction, laser Raman spectroscopy, and theoretical calculations. MnCO3-rich carbonate underwent a structural phase transition from the CaCO3-I structure into the CaCO3-VI structure at 45–48 GPa, while CaCO3-rich carbonate transformed into CaCO3-III and CaCO3-VI at approximately 2 and 15 GPa, respectively. The equation of state and vibrational properties of MnCO3-rich and CaCO3-rich carbonates changed dramatically across the phase transition. The CaCO3-VI-structured CaCO3-rich and MnCO3-rich carbonates were stable at room temperature up to at least 53 and 75 GPa, respectively. The addition of smaller cations (e.g., Mn2+, Mg2+, and Fe2+) can enlarge the stability field of the CaCO3-I phase as well as increase the pressure of the structural transition into the CaCO3-VI phase.

Key words: Carbonate; X-ray diffraction; raman spectroscopy; high pressure

References cited

  • Baroni, S., and Resta, R. (1986) Ab initio calculation of the low-frequency Raman cross section in silicon. Physical Review B, 33, 5969–5971.Google Scholar

  • Baroni, S., de Gironcoli, S., Dal Corso, A., and Giannozzi, P. (2001) Phonons and related crystal properties from density-functional perturbation theory. Review of Modern Physics, 73, 515–562.Google Scholar

  • Berg, G.W. (1986) Evidence for carbonate in the mantle. Nature, 324, 50–51.Google Scholar

  • Biellmann, C., Gillet, P., Guyot, F.O., Peyronneau, J., and Reynard, B. (1993) Experimental evidence for carbonate stability in the Earth’s lower mantle. Earth and Planetary Science Letters, 118, 31—41.Google Scholar

  • Born, M., and Huang, K. (1954) Dynamical theory of crystal lattices. Oxford University Press, U.K.Google Scholar

  • Boulard, E., Goncharov, A.F., Blanchard, M., and Mao, W.L. (2015) Pressure-induced phase transition in MnCO3 and its implications on the deep carbon cycle. Journal of Geophysical Research: Solid Earth, 120, 4069–4079.Google Scholar

  • Caracas, R., and Bobocioiu, E. (2011) The WURM project—a freely available web-based repository of computed physical data for minerals. American Mineralogist, 96, 437–444.Google Scholar

  • Catalli, K., and Williams, Q. (2005) A high-pressure phase transition of calcite-III. American Mineralogist, 90, 1679–1682.Google Scholar

  • Dasgupta, R., and Hirschmann, M.M. (2010) The deep carbon cycle and melting in Earth’s interior. Earth and Planetary Science Letters, 298, 1–13.Google Scholar

  • Dera, P., Zhuravlev, K., Prakapenka, V., Rivers, M.L., Finkelstein, G.J., Grubor-Urosevic, O., Tschauner, O., Clark, S.M., and Downs, R.T. (2013) High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Pressure Research, 33, 466–484.Google Scholar

  • Dubrawski, J.V., Channon, A.-L., and Warne, S.S. (1989) Examination of the siderite-magnesite mineral series by Fourier transform infrared spectroscopy. American Mineralogist, 74, 187–190.Google Scholar

  • Farfan, G., Wang, S., Ma, H., Caracas, R., and Mao, W.L. (2012) Bonding and structural changes in siderite at high pressure. American Mineralogist, 97, 1421–1426.Google Scholar

  • Farfan, G.A., Boulard, E., Wang, S., and Mao, W.L. (2013) Bonding and electronic changes in rhodochrosite at high pressure. American Mineralogist 98, 1817–1823.Google Scholar

  • Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104, 9182–9186.Google Scholar

  • Fiquet, G., Guyot, F., and Itie, L.P. (1994) High-pressure X-ray diffraction study of carbonates: MgCO3, CaMg(CO3)2, and CaCO3. American Mineralogist, 79, 15–23.Google Scholar

  • Fiquet, G., Guyot, F., Kunz, M., Matas, J., Andrault, D., and Hanfland, M. (2002) Structural refinements of magnesite at very high pressure. American Mineralogist, 87, 1261–1265.Google Scholar

  • Frost, D.J., and McCammon, C.A. (2008) The redox state of Earth’s mantle. Annual Review of Earth and Planetary Sciences, 36, 389–420.Google Scholar

  • Fuchs, M., and Scheffler, M. (1999) Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Computer Physics Communications, 119, 67–98.Google Scholar

  • Gillet, P., Biellmann, C., Reynard, B., and McMillan, P. (1993) Raman spectroscopic studies of carbonates part I: High-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Physics and Chemistry of Minerals, 20, 1–18.Google Scholar

  • Gonze, X., Rignanese, G.-M., and Caracas, R. (2005) First-principles studies of the lattice dynamics of crystals, and related properties. Zeitschrift für Kristallographie, 220, 458–472.Google Scholar

  • Gonze, X., Amadon, B., Anglade, P.M., Beuken, J.M., Bottin, F., Boulanger, P., Bruneval, F., Caliste, D., Caracas, R., Côté, M., and others. (2009) ABINIT: First-principles approach to material and nanosystem properties. Computer Physics Communications, 180, 2582–2615.Google Scholar

  • Graf, D.L. (1961) Crystallographic tables for the rhombohedral carbonates. American Mineralogist, 46, 1283–1316.Google Scholar

  • Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., and Hausermann, D. (1996) Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14, 235–248.Google Scholar

  • Hazen, R.M., and Schiffries, C.M. (2013) Why deep carbon? Reviews in Mineralogy and Geochemistry, 75, 1–6.Google Scholar

  • Ishizawa, N., Setoguchi, H., and Yanagisawa, K. (2013) Structural evolution of calcite at high temperatures: Phase V unveiled. Scientific Reports, 3, 2832.Google Scholar

  • Isshiki, M., Irifune, T., Hirose, K., Ono, S., Ohishi, Y., Watanuki, T., Nishibori, E., Takata, M., and Sakata, M. (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature, 427, 60–63.Google Scholar

  • Kraft, S., Knittle, E., and Williams, Q. (1991) Carbonate stability in the Earth’s mantle: A vibrational spectroscopic study of aragonite and dolomite at high pressures and temperatures. Journal of Geophysical Research, 96, 17997–18009.Google Scholar

  • Lavina, B., Dera, P., Downs, R.T., Yang, W., Sinogeikin, S., Meng, Y., Shen, G., and Schiferl, D. (2010) Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition. Physical Review B, 82, 064110.Google Scholar

  • Lin, J.-F., Liu, J., Jacobs, C., and Prakapenka, V.B. (2012) Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron. American Mineralogist, 97, 583–591.Google Scholar

  • Litasov, K.D., Fei, Y., Ohtani, E., Kuribayashi, T., and Funakoshi, K. (2008) Thermal equation of state of magnesite to 32 GPa and 2073 K. Physics of the Earth and Planetary Interiors, 168, 191–203.Google Scholar

  • Liu, J., Lin, J.-F., Mao, Z., and Prakapenka, V.B. (2014) Thermal equation of state and spin transition of magnesiosiderite at high pressure and temperature. American Mineralogist, 99, 84–93.Google Scholar

  • Liu, J., Lin, J.-F., Mao, Z., and Prakapenka, V.B. (2015) High-pressure orthorhombic ferromagnesite as a potential deepmantle carbon carrier. Scientific Reports, 5, 7640.Google Scholar

  • Liu, L.-G., and Mernagh, T.P. (1990) Phasetransitions and Raman spectra of calcite at high pressures and room temperature. American Mineralogist, 75, 801–806.Google Scholar

  • Liu, L.-g., Lin, C.-C., and Yang, Y.-J. (2001) Formation of diamond by decarbonation of MnCO3. Solid State Communications, 118, 195–198.Google Scholar

  • Mao, H.-K., Xu, J., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91, 4673–4676.Google Scholar

  • Merlini, M., Crichton, W.A., Hanfland, M., Gemmi, M., Müller, H., Kupenko, I., and Dubrovinsky, L. (2012a) Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proceedings of the National Academy of Sciences, 109, 13509–13514.Google Scholar

  • Merlini, M., Hanfland, M., and Crichton, W.A. (2012b) CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: Possible host structures for carbon in the Earth’s mantle. Earth and Planetary Science Letters, 333–334, 265–271.Google Scholar

  • Merlini, M., Hanfland, M., and Gemmi, M. (2015) The MnCO3-II high-pressure polymorph of rhodocrosite. American Mineralogist, 100, 2625–2629.Google Scholar

  • Monkhorst, H.J., and Pack, J.D. (1976) Special points for Brillouin-zone integrations. Physical Review B, 13, 5188–5192.Google Scholar

  • Oganov, A.R., Glass, C.W., and Ono, S. (2006) High-pressure phases of CaCO3: Crystal structure prediction and experiment. Earth and Planetary Science Letters, 241, 95–103.Google Scholar

  • Ono, S. (2007) High-pressurephasetransformationinMnCO3: a synchrotron XRD study. Mineralogical Magazine, 71, 105–111.Google Scholar

  • Ono, S., Kikegawa, T., Ohishi, Y., and Tsuchiya, J. (2005) Post-aragonite phase transformation in CaCO3 at 40 GPa. American Mineralogist, 90, 667–671.Google Scholar

  • Ono, S., Kikegawa, T., and Ohishi, Y. (2007) High-pressure transition of CaCO3. American Mineralogist, 92, 1246–1249.Google Scholar

  • Pippinger, T., Miletich, R., Merlini, M., Lotti, P., Schouwink, P., Yagi, T., Crichton, W.A., and Hanfland, M. (2015) Puzzling calcite-III dimorphism: Crystallography, high-pressure behavior, and pathway of single-crystal transitions. Physics and Chemistry of Minerals, 42, 29–43.Google Scholar

  • Prescher, C., and Prakapenka, V.B. (2015) DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Research, 35(3), 223–230.Google Scholar

  • Santillan, J., and Williams, Q. (2004) Ahigh-pressure infrared and X-ray study of FeCO3 and MnCO3: comparison with CaMg(CO3)2-dolomite. Physics of the Earth and Planetary Interiors, 143–144, 291–304.Google Scholar

  • Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32(5), 751–767.Google Scholar

  • Shi, W., Fleet, M.E., and Shieh, S.R. (2012) High-pressure phase transitions in Ca-Mn carbonates (Ca,Mn)CO3 studied by Raman spectroscopy. American Mineralogist, 97, 999–1001.Google Scholar

  • Suito, K., Namba, J., Horikawa, T., Taniguchi, Y., Sakurai, N., Kobayashi, M., Onodera, A., Shimomura, O., and Kikegawa, T. (2001) Phase relations of CaCO3 at high pressure and high temperature. American Mineralogist, 86, 997–1002.Google Scholar

  • Veithen, M., Gonze, X., and Ghosez, P. (2005) Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory. Physical Review B, 71, 125107.Google Scholar

  • Walter, M.J., Kohn, S.C., Araujo, D., Bulanova, G.P., Smith, C.B., Gaillou, E., Wang, J., Steele, A., and Shirey, S.B. (2011) Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science, 334, 54–57.Google Scholar

  • Wang, A., Pasteris, J.D., Meyer, H.O.A., and Dele-Duboi, M.L. (1996) Magnesitebearing inclusion assemblage in natural diamond. Earth and Planetary Science Letters, 141(1–4), 293–306.Google Scholar

  • White, W.B. (1974) The carbonate minerals. In V.C. Farmer, Ed., Infrared Spectra of Minerals, p. 227–284. Mineralogical Society of Great Britain & Ireland, London.Google Scholar

  • Williams, Q., Collerson, B., and Knittle, E. (1992) Vibrational spectra of magnesite (MgCO3) and calcite-III at high pressures. American Mineralogist, 77, 1158–1165.Google Scholar

  • Zhang, J., and Reeder, R.J. (1999) Comparative compressibilities of calcite-structure carbonates: Deviations from empirical relations. American Mineralogist, 84, 861–870.Google Scholar

  • Zhang, J., Martinez, I., Guyot, F., and Reeder, R.J. (1998) Effects of Mg-Fe2+ substitution in calcite-structure carbonates: Thermoelastic properties. American Mineralogist, 83, 280–287.Google Scholar

About the article

Received: 2016-02-27

Accepted: 2016-07-25

Published Online: 2016-11-30

Published in Print: 2016-12-01

Citation Information: American Mineralogist, Volume 101, Issue 12, Pages 2723–2730, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5742.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in