Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

See all formats and pricing
More options …
Volume 101, Issue 2


Cancrinite-group minerals: Crystal-chemical description and properties under non-ambient conditions—A review

G. Diego Gatta
  • Corresponding author
  • Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, I-20133 Milano, Italy
  • CNR—Istituto di Cristallografia, Sede di Bari, Via G. Amendola 122/o, I-70126 Bari, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paolo Lotti
  • Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, I-20133 Milano, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-18 | DOI: https://doi.org/10.2138/am-2016-5282


This is a review of the thermal and compressional behavior of cancrinite-group minerals with a description of the mechanisms, at the atomic scale, that govern their P-T-induced structure evolution. The open-framework structure of this group of feldspathoids is characterized by the [CAN] topology, which contains large parallel channels (confined by 12-membered rings of tetrahedra), surrounded by columns of cages. At least two structural “subgroups” can be identified according to the nature of the constituents filling the cages, irrespective of the channel population. The minerals of the “cancrinite subgroup” show [NaH2O]+ clusters into the cages and those of the “davyne subgroup” contains [CaCl]+ clusters. Beside a similar bulk compressibility and expansivity at room conditions for all the minerals of the group, a different elastic anisotropy, coupled with different deformation mechanisms of the tetrahedral framework, were found to be mainly controlled by the nature of the population filling the cages. The role played by the channel populations appears to be secondary. These experimental findings allow us to provide a model of the structure evolution in response to the different cage content, i.e., NaH2O+ and CaCl+.

The high-temperature studies of the hydrous members of the cancrinite subgroup reveal a slow dehydration process, often irreversible at the timescale of the experiments and leading to quasi-anhydrous high-temperature forms that keep their crystallinity even up to 800–900 K (at room P). The experiments at high pressure on the cancrinite-group minerals show a high-P stability, at least up to 7–8 GPa (at room-T), which is quite surprising if we consider their microporous nature. The P-induced stability is the effect of a pronounced structural flexibility, which in turn is based mainly on tilting of rigid tetrahedra around O atoms that behave as hinges. The character and the mechanisms that govern the P-T-induced P63-to-P63/m phase transition in the compounds of davyne subgroup are also discussed.

Keywords: Feldspathoids; cancrinite; davyne; vishnevite; balliranoite; temperature; pressure; elastic behavior; host-guest interactions; framework deformation; Invited Centennial article; Review article

References cited

  • Angel, R.J. (2000) Equations of state. In R.M. Hazen and R.T. Downs, Eds., High-Temperature and High-Pressure Crystal Chemistry, 41, 35–60. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America and Geochemical Society, Chantilly, Virginia.Google Scholar

  • Angel, R.J., Allan, D.R., Miletich, R., and Finger, L.W. (1997) The use of quartz as an internal pressure standard in high-pressure crystallography. Journal of Applied Crystallography, 30, 461–466.Google Scholar

  • Angel, R.J., Alvaro, M., and Gonzalez-Platas, J. (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie, 229, 405–419.Google Scholar

  • Baerlocher, C., McCusker, L.B., and Olson, D.H. (2007) Atlas of Zeolite Framework Types, 6th ed., 398 p. Elsevier, Amsterdam.Google Scholar

  • Ballirano, P., Maras, A., Caminiti, R., and Sadun, C. (1995) Carbonate-cancrinite: in situ real-time thermal processes studied by means of energy-dispersive X-ray powder-diffractometry. Powder Diffraction, 10, 173–177.Google Scholar

  • Bao, Y., Grutzek, M.W., and Jantzen, C.M. (2005) Preparation and properties of hydroceramic waste forms made with simulated Hanford low-acitivity waste. Journal of American Ceramic Society, 88, 3287–3302.Google Scholar

  • Bell, K., Dunworth, E.A., Bulakh, A.G., and Ivanikov, V.V. (1996) Alkaline rocks of the Turiy pensisula, Russia, including type-locality turjaite and turjite: a review. Canadian Mineralogist, 34, 265–280.Google Scholar

  • Benusa, M.T., Angel, R.J., and Ross, N.L. (2005) Compression of albite, NaAlSi3O8. American Mineralogist, 90, 1115–1120.Google Scholar

  • Berman, R.G. (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29, 445–522.Google Scholar

  • Bieniok, A., Brendel, U., Paulus, E.F., and Amthauer, G. (2005) Microporous cobalto- and zinco-phosphates with the framework-type of cancrinite. European Journal of Mineralogy, 17, 813–818.Google Scholar

  • Birch, F. (1947) Finite elastic strain of cubic crystals. Physical Review, 71, 809–824.Google Scholar

  • Bonaccorsi, E., and Merlino, S. (2005) Modular microporous minerals: cancrinitedavyne group and C-S-H phases. In G. Ferraris, and S. Merlino, Eds., Micro-and Mesoporous Mineral Phases, 57, p. 241–290. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America and Geochemical Society, Chantilly, Virginia.Google Scholar

  • Bonaccorsi, E., Merlino, S., and Pasero, M. (1990) Davyne: its structural relationship with cancrinite and vishnevite. Neues Jahrbuch für Mineralogie-Monatshefte, 97–112.Google Scholar

  • Bonaccorsi, E., Merlino, S., Orlandi, P., Pasero, M., and Vezzalini, G. (1994) Quadridavyne [(Na,K)6Cl2][Ca2Cl2][Si6Al6O24], a new feldspathoid mineral from Vesuvius area. European Journal of Mineralogy, 6, 481–487.Google Scholar

  • Bonaccorsi, E., Comodi, P., and Merlino, S. (1995) Thermal behaviour of davyne-group minerals. Physics and Chemistry of Minerals, 22, 367–374.Google Scholar

  • Bonaccorsi, E., Merlino, S., Pasero, M., and Macedonio, G. (2001) Microsommite: crystal chemistry, phase transitions, Ising model and Monte Carlo simulations. Physics and Chemistry of Minerals, 28, 509–522.Google Scholar

  • Bonaccorsi, E., Della Ventura, G., Bellatreccia, F., and Merlino, S. (2007) The thermal behaviour and dehydration of pitiglianoite, a mineral of the cancrinite-group. Microporous and Mesoporous Materials, 99, 225–235.Google Scholar

  • Brigatti, M.F., and Guggenheim, S. (2002) Mica crystal chemistry and the influence of pressure, temperature and solid solution on atomistic models. In A. Mottana, F.P. Sassi, J.B. Thompson, and S. Guggenheim, Eds., Micas: Crystal Chemistry and Metamorphic Petrology, 46, p. 1–98. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America and Geochemical Society, Chantilly, Virginia.Google Scholar

  • Buck, E.C., and McNamara, B.K. (2004) Precipitation of nitrate-cancrinite in Hanford tank-sludge. Environmental Science and Technology, 38, 4432–4438.Google Scholar

  • Chukanov, N.V., Pekov, I.V., Olysych, L.V., Massa, W., Yakubovich, O.V., Zadov, A.E., Rastsvetaeva, R.K., and Vigasina, M.F. (2010a) Kyanoxalite, a new cancrinite-group mineral species with extraframework oxalate anion from the Lovozero alkaline pluton, Kola peninsula. Geology of Ore Deposits, 52, 778–790.Google Scholar

  • Chukanov, N.V., Zubkova, N.V., Pekov, I.V., Olysych, L.V., Bonaccorsi, E., and Pushcharovsky, D.Y. (2010b) Balliranoite, (Na,K)6Ca2(Si6Al6O24)Cl2(CO3), a new cancrinite-group mineral from Monte Somma—Vesuvio volcanic complex, Italy. European Journal of Mineralogy, 22, 113–119.Google Scholar

  • Colella, C., and de’Gennaro, M. (1989) Cancrinite crystallization from alkaline aluminosilicate systems containing large and small cations. In M.L. Occelli and H.E. Robson, Eds., Zeolite synthesis, vol. 398, p. 196–208. ACS Symposium Series, American Chemical Society.Google Scholar

  • Deer, W.A., Howie, R.A., Wise, W.S., and Zussman, J. (2004) Rock-forming minerals. In Framework Silicates: Silica Minerals, Feldspathoids and the Zeolites, vol. 4B, 996 p. The Geological Society, London.Google Scholar

  • Della Ventura, G., Bellatreccia, F., and Bonaccorsi, E. (2005) CO2 in minerals of the cancrinite-sodalite group: pitiglianoite. European Journal of Mineralogy, 17, 847–851.Google Scholar

  • Della Ventura, G., Bellatreccia, F., Parodi, G.C., Càmara, F., and Piccinini, M. (2007) Single-crystal FTIR and X-ray study of vishnevite, ideally [Na6(SO4)] [Na2(H2O)2](Si6Al6O24). American Mineralogist, 92, 713–721.Google Scholar

  • Della Ventura, G., Bellatreccia, F., and Piccinini, M. (2008) Channel CO2 in feldspathoids: new data and new perspectives. Rendiconti Lincei-Scienze Fisiche e Naturali, 19, 141–159.Google Scholar

  • Edgar, A.D. (1964) Studies on cancrinites: II—Stability fields and cell dimensions of potassium and potassium-rich cancrinites. Canadian Mineralogist, 8, 53–67.Google Scholar

  • Edgar, A.D. (1984) Chemistry, occurrence and paragenesis of feldspathoids: A review. In W.L. Brown, Ed., Feldspars and Feldspathoids: Structures, Properties and Occurrences, 137, 501–532. NATO ASI Series, Series C: Mathematical and Physical Sciences.Google Scholar

  • Erd, R.C., and Czamanske, G.K. (1983) Orickite and coyoteite, two new sulfides minerals from Coyote Peak, Humboldt County, California. American Miner-alogist, 68, 245–254.Google Scholar

  • Fall, A., Bodnar, R.J., Szabò, C., and Pàl-Molnàr, E. (2007) Fluid evolution in the nepheline syenite of the Ditrau alkaline massif, Transylvania, Romania. Lithos, 91, 331–345.Google Scholar

  • Fechtelkord, M., Posnatzki, B., Buhl, J.-C., Fyfe, C.A., Groat, L.A., and Raudsepp, M. (2001) Characterization of synthetic Cs-Li cancrinite grown in a butanediol-water system; an NMR spectroscopic and Rietveld refinement study. American Mineralogist, 86, 881–888.Google Scholar

  • Foit, F.F., Peacor, D.R., and Heinrich, E.W. (1973) Cancrinite with a new super-structure from Bancroft, Ontario. Canadian Mineralogist, 11, 940–951.Google Scholar

  • Fulignati, P., Panichi, C., Sbrana, A., Caliro, S., Gioncada, A., and Del Moro, A. (2005) Skarn formation at the walls of the 79 AD magma chamber of Vesuvius (Italy): mineralogical and isotopic constraints. Neues Jahrbuch für Mineralogie-Abhandlungen, 181/1, 53–66.Google Scholar

  • Gatta, G.D. (2008) Does porous mean soft? On the elastic behaviour and structural evolution of zeolites under pressure. Zeitschrift für Kristallographie, 223, 160–170.Google Scholar

  • Gatta, G.D. (2010) Extreme deformation mechanisms in open-framework silicates at high-pressure: Evidence of anomalous inter-tetrahedral angles. Microporous and Mesoporous Materials, 128, 78–84.Google Scholar

  • Gatta, G.D., and Angel, R.J. (2007) Elastic behavior and pressure-induced structural evolution of nepheline: implications for the nature of the modulated superstructure. American Mineralogist, 92, 1446–1455.Google Scholar

  • Gatta, G.D., and Lee, Y. (2008) Pressure-induced structural evolution and elastic behaviour of Na6Cs2Ga6Ge6O24·Ge(OH)6 variant of cancrinite: A synchrotron powder diffraction study. Microporous and Mesoporous Materials, 116, 51–58.Google Scholar

  • Gatta, G.D., and Lee, Y. (2014) Zeolites at high pressure: A review. Mineralogical Magazine, 78, 267–291.Google Scholar

  • Gatta, G.D., Nestola, F., and Boffa Ballaran, T. (2006) Elastic behavior, phase transition and pressure induced structural evolution of analcime. American Mineralogist, 91, 568–578.Google Scholar

  • Gatta, G.D., Rotiroti, N., Boffa Ballaran, T., and Pavese, A. (2008a) Leucite at high-pressure: elastic behaviour, phase stability and petrological implications. American Mineralogist, 93, 1588–1596.Google Scholar

  • Gatta, G.D., Rotiroti, N., Zanazzi, P.F., Rieder, M., Drabek, M., Weiss, Z., and Klaska, R. (2008b) Synthesis and crystal structure of the feldspathoid CsAlSiO4: an open-framework silicate and potential nuclear waste disposal phase. American Mineralogist, 93, 988–995.Google Scholar

  • Gatta, G.D., Rinaldi, R., McIntyre, G.J., Nénert, G., Bellatreccia, F., Guastoni, A., and Della Ventura, G. (2009a) On the crystal structure and crystal chemistry of pollucite, (Cs,Na)16Al16Si32O96·nH2O: a natural microporous material of interest in nuclear technology. American Mineralogist, 94, 1560–1568.Google Scholar

  • Gatta, G.D., Rotiroti, N., Boffa Ballaran, T., Sanchez-Valle, C., and Pavese, A. (2009b) Elastic behavior and phase-stability of pollucite, a potential host for nuclear waste. American Mineralogist, 94, 1137–1143.Google Scholar

  • Gatta, G.D., Angel, R.J., and Carpenter, M.A. (2010) Low-temperature behaviour of natural kalsilite with P31c symmetry: an in-situ single-crystal X-ray diffraction study. American Mineralogist, 95, 1027–1034.Google Scholar

  • Gatta, G.D., Angel, R.J., Zhao, J., Alvaro, M., Rotiroti, N., and Carpenter, M.A. (2011) Phase stability, elastic behavior, and pressure-induced structural evolution of kalsilite: A ceramic material and high-T/high-P mineral. American Mineralogist, 96, 1363–1372.Google Scholar

  • Gatta, G.D., Lotti, P., Kahlenberg, V., and Haefeker, U. (2012a) The low-temperature behaviour of cancrinite: an in situ single-crystal X-ray diffraction study. Mineralogical Magazine, 76, 933–948.Google Scholar

  • Gatta, G.D., Merlini, M., Lotti, P., Lausi, A., and Rieder, M. (2012b) Phase stability and thermo-elastic behavior of CsAlSiO4 (ABW): A potential nuclear waste disposal material. Microporous and Mesoporous Materials, 163, 147–152.Google Scholar

  • Gatta, G.D., Lotti, P., Nénert, G., and Kahlenberg, V. (2013a) On the crystal structure and low-temperature behaviour of davyne: A single-crystal X-ray and neutron diffraction study. Microporous and Mesoporous Materials, 185, 137–148.Google Scholar

  • Gatta, G.D., Lotti, P., and Kahlenberg, V. (2013b) The low-temperature behavior of balliranoite (CAN topology): An in situ single-crystal X-ray diffraction study. Microporous and Mesoporous Materials, 174, 44–53.Google Scholar

  • Gatta, G.D., Comboni, D., Alvaro, M., Lotti, P., Càmara, F., and Domeneghetti, M.C. (2014) Thermoelastic behavior and dehydration process of cancrinite. Physics and Chemistry of Minerals, 41, 373–386.Google Scholar

  • Gies, H., Kirchner, R., van Koningsveld, H., and Treacey, M.M.J. (1999) Faulted zeolite framework structures. In M.M.J. Treacey, B.K. Marcus, M.E. Bisher, and J.B. Higgins, Eds., Proceedings of the 12th International Zeolite Conference, Baltimore, Maryland, U.S.A., July 5–11, 1998, p. 2999–3029. Materials Research Society, Warrendale, Pennsylvania.Google Scholar

  • Grossman, L. (1980) Refractory inclusions in the Allende meteorite. Annual Review of Earth and Planetary Sciences, 8, 559–608.Google Scholar

  • Grundy, H.D., and Hassan, I. (1982) The crystal structure of a carbonate-rich cancrinite. Canadian Mineralogist, 20, 239–251.Google Scholar

  • Harlow, G.E., and Bender, W. (2013) A study of ruby (corundum) composition from the Mogok Belt, Myanmar: searching for chemical fingerprints. American Mineralogist, 98, 1120–1132.Google Scholar

  • Hassan, I. (1996a) The thermal behavior of cancrinite. Canadian Mineralogist, 34, 893–900.Google Scholar

  • Hassan, I. (1996b) Thermal expansion of cancrinite. Mineralogical Magazine, 60, 949–956.Google Scholar

  • Hassan, I., and Buseck, P.R. (1992) The origin of the superstructure and modulations in cancrinite. Canadian Mineralogist, 30, 49–59.Google Scholar

  • Hassan, I., and Grundy, H.D. (1984) The character of cancrinite-vishnevite solid solution series. Canadian Mineralogist, 22, 333–340.Google Scholar

  • Hassan, I., and Grundy, H.D. (1990) Structure of davyne and implications for stacking faults. Canadian Mineralogist, 28, 341–349.Google Scholar

  • Hassan, I., Antao, S.M., and Parise, J.B. (2006) Cancrinite: Crystal structure, phase transitions and dehydration behavior with temperature. American Mineralogist, 91, 1117–1124.Google Scholar

  • Holland, T.J.B., and Powell, R. (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29, 333–383.Google Scholar

  • Isupova, D., Ida, A., Kihara, K., Morishita, T., and Bulka, G. (2010) Asymmetric thermal vibrations of atoms and pyroelectricity in cancrinite. Journal of Mineralogical and Petrological Sciences, 105, 29–41.Google Scholar

  • Jarchow, O. (1965) Atomanordnung und strukturverfeinerung von cancrinit. Zeitschrift für Kristallographie, 122, 407–422.Google Scholar

  • Lee, Y., Parise, J.B., Tripathi, A., Kim, S.J., and Vogt, T. (2000) Synthesis and crystal structures of gallium and germanium variants of cancrinite. Microporous and Mesoporous Materials, 39, 445–455.Google Scholar

  • Löns, J., and Schulz, H. (1967) Strukturverfeinerung von Sodalith, Na8Si6A16O24C12. Acta Crystallographica, 23, 434–436.Google Scholar

  • Lotti, P. (2014) Cancrinite-group minerals at non-ambient conditions: a model of the elastic behavior and structure evolution. Ph.D. thesis, University of Milan (Italy), 306.Google Scholar

  • Lotti, P., Gatta, G.D., Rotiroti, N., and Càmara, F. (2012) High-pressure study of a natural cancrinite. American Mineralogist, 97, 872–882.Google Scholar

  • Lotti, P., Gatta, G.D., Merlini, M., and Hanfland, M. (2014a) High-pressure behavior of davyne [CAN-topology]: An in situ single-crystal synchrotron diffraction study. Microporous and Mesoporous Materials, 198, 203–214.Google Scholar

  • Lotti, P., Gatta, G.D., Rotiroti, N., Càmara, F., and Harlow, G.E. (2014b) The high-pressure behavior of balliranoite: a cancrinite-group mineral. Zeitschrift für Kristallographie, 229, 63–76.Google Scholar

  • Merlino, S. (1984) Feldspathoids: Their average and real structures. In W.L. Brown, Ed., Feldspars and Feldspathoids: Structures, Properties and Occurrences, 137, 435–470. NATO ASI Series, Series C: Mathematical and Physical Sciences.Google Scholar

  • Merlino, S., Mellini, M., Bonaccorsi, E., Pasero, M., Leoni, L., and Orlandi, P. (1991) Pitiglianoite, a new feldspathoid from southern Tuscany, Italy: Chemical composition and crystal structure. American Mineralogist, 76, 2003–2008.Google Scholar

  • Norby, P., Krogh Andersen, I.G., Krogh Andersen, E., Colella, C., and de’ Gennaro, M. (1991) Synthesis and structure of lithium cesium and lithium thallium cancrinites. Zeolites, 11, 248–253.Google Scholar

  • Ogorodova, L.P., Mel’chakova, L.V., Vigasina, M.F., Olysych, L.V., and Pekov, I.V. (2009) Cancrinite and cancrisilite in the Khibina-Lovozero alkaline complex: thermochemical and thermal data. Geochemistry International, 47, 260–267.Google Scholar

  • Oh, J.E., Clark, S.M., and Monteiro, P.J.M. (2011) Determination of the bulk modulus of hydroxycancrinite, a possible zeolitic precursor in geopolymers, by high-pressure synchrotron X-ray diffraction. Cement and Concrete Composites, 33, 1014–1019.Google Scholar

  • Olysych, L.V., Vigasina, M.F., Mel’chakova, L.V., Ogorodova, L.P., Pekov, I.V., and Chukanov, N.V. (2011) Thermal evolution and thermochemistry of the cancrinite-group carbonate-oxalate mineral. Geochemistry International, 49, 731–737.Google Scholar

  • Pauling, L. (1930) The structure of some sodium and calcium aluminosilicates. Proceedings of the National Academyof Sciences, 16, 453–459.Google Scholar

  • Peacor, D.R., Rouse, R.C., and Ahn, J.-H. (1987) Crystal structure of tiptopite, a framework berillophosphate isotypic with basic cancrinite. American Miner-alogist, 72, 816–820.Google Scholar

  • Pekov, I.V., Olysych, L.V., Chukanov, N.V., Zubkova, N.V., and Pushcharovsky, D.Y. (2011a) Crystal chemistry of cancrinite-group minerals with an AB type framework: a review and new data. I. Chemical and structural variations. Canadian Mineralogist, 49, 1129–1150.Google Scholar

  • Pekov, I.V., Olysych, L.V., Zubkova, N.V., Chukanov, N.V., Van, K.V., and Pushcharovsky, D.Y. (2011b) Depmeierite Na8[Al6Si6O24](PO4,CO3)1-x*3H2O (x<0.5): a new cancrinite-group mineral species from the Lovozero alkaline pluton of the Kola peninsula. Geology of Ore Deposits, 53, 604–613.Google Scholar

  • Rastsvetaeva, R.K., Pekov, I.V., Chukanov, N.V., Rozenberg, K.A., and Olysych, L.V. (2007) Crystal structures of low-symmetry cancrinite and cancrisilite varieties. Crystallography Report, 52, 811–818.Google Scholar

  • Riley, B.J., Crum, J.V., Matyas, J., McCloy, J.S., and Lepry, W.C. (2012) Solution-derived, chloride-containing minerals as a waste form for alkali chlorides. Journal of American Ceramic Society, 95, 3115–3123.Google Scholar

  • Rivera, N.A., Choi, S., Strepka, C., Mueller, K.T., Chorover, J., and O’Day, P.A. (2011) Cesium and strontium incorporation into zeolite-type phases during homogeneous nucleation from caustic solution. American Mineralogist, 96, 1809–1820.Google Scholar

  • Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.M., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., and Unger, K.K. (1994) Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry, 66, 1739–1758.Google Scholar

  • Sanchez-Valle, V., Chio, C-H., and Gatta, G.D. (2010) Single-crystal elastic properties of (Cs,Na)AlSi2O6·H2O pollucite: with potential use for long-term storage of Cs radioisotopes. Journal of Applied Physics, 108, 093509 (1–7).Google Scholar

  • Sapozhnikov, A.N. (2010) Crystal chemical features of davyne from Tultui lazurite deposit (Baikal region). Journal of Structural Chemistry, 51, 507–513.Google Scholar

  • Sindern, S., and Kramm, U. (2000) Volume characteristics and element transfer of fenite aureoles: a case-study from the Iivaara alkaline complex, Finland. Lithos, 51, 75–93.Google Scholar

  • Sirbescu, M., and Jenkins, D.M. (1999) Experiments on the stability of cancrinite in the system Na2O-CaO-Al2O3-SiO2-CO2-H2O. American Mineralogist, 84, 1850–1860.Google Scholar

  • Smith, J.V. (2000) Tetrahedral frameworks of zeolites, clathrates and related materials. Landolt-Börnstein, Group IV Physical Chemistry, 14A, 251–266.Google Scholar

  • Wang, G., and Um, W. (2013) Facilitated strontium transport by remobilization of strontium-containing secondary precipitates in Hanford site subsurface. Journal of Hazardous Materials, 248–249, 364–370.Google Scholar

  • Zanazzi, P.F., and Pavese, A. (2002) Behavior of Micas at High-Pressure and High-Temperature. In A. Mottana, F.P. Sassi, J.B. Thompson, and S. Guggenheim, Eds., Micas: Crystal Chemistry and Metamorphic Petrology, 46, p. 99–116. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America and Geochemical Society, Chantilly, Virginia.Google Scholar

  • Zubkova, N.V., Chukanov, N.V., Pekov, I.V., and Pushcharovsky, D.Y. (2011) Low-hydrous cancrinite: atomic structure and indicative importance. Doklady Earth Sciences, 439, 998–1001.Google Scholar

About the article

Received: 2014-12-17

Accepted: 2015-03-18

Published Online: 2016-02-18

Published in Print: 2016-02-01

Manuscript handled by Martin Kunz

Citation Information: American Mineralogist, Volume 101, Issue 2, Pages 253–265, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5282.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in