Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

See all formats and pricing
More options …
Volume 101, Issue 2


Jianshuiite in oceanic manganese nodules at the Paleocene-Eocene boundary

Jeffrey E. Post
  • Corresponding author
  • Department of Mineral Sciences, Smithsonian Institution, P.O. Box 37012, Washington, D.C. 20013-7012, U.S.A.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ellen Thomas
  • Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, Connecticut 06520 U.S.A.
  • Department of Earth and Environmental Sciences, Wesleyan University, 265 Church Street, Middletown, Connecticut 06459, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter J. Heaney
Published Online: 2016-02-18 | DOI: https://doi.org/10.2138/am-2016-5347


Synchrotron powder X-ray diffraction and scanning electron microscopy examinations of man-ganese oxide concretions/nodules (∼0.3-1.0 mm diameter) from ODP Site 1262 on Walvis Ridge in the Southeastern Atlantic Ocean revealed that they consist primarily of the layered Mn oxide phase jianshuiite [(Mg,Mn,Ca)Mn34+O73H2O]. The nodules are from an interval with severe carbonate dis-solution that represents the Paleocene/Eocene (P/E) thermal maximum (∼5 5.8 Ma). Most nodules from the middle of the carbonate dissolution interval contain internal open space, and consist almost entirely of euhedral plate-like jianshuiite crystals, 2–4 μm in diameter and ∼0.1–0.5 μm thick. Backscattered electron images and energy-dispersive X-ray analyses revealed stacks of interleaved Al-rich and Al-poor jianshuiite crystals in some nodules. The crystals in other nodules contain predominantly Mg (with trace K and Al) in addition to Mn and O, making them near “end-member” jianshuiite. Rietveld refinements in space group R3̄ confirmed the isostructural relationship between jianshuiite and chalcophanite, with Mg occupying the interlayer position above and below the vacant sites in the Mn/O octahedral sheet, and coordinated to 3 octahedral layer O atoms (1.94 Å) and 3 interlayer water O atoms (2.13 Å). Final refined occupancy factors suggest that small quantities of Ni and possibly Mn2+ are located on the Mg site. The transient appearance of the Mg-rich birnessite-like phase jianshuiite, probably abiotically produced, must indicate an exceptional transient change in the chemistry of the pore fluids within deep ocean sediments directly following the P/E boundary, possibly as a result of decreasing oxygen levels and pH, followed by a return to pre-event conditions.

Keywords: Jianshuiite; birnessite; paleocene-eocene thermal maximum (PETM); X-ray diffraction

References Cited

  • Burns, R.G., and Burns, V.M. (1977) Mineralogy. In G.P. Glasby, Ed., Marine Manganese Deposits, Elsevier, Amsterdam, pp. 185-248.Google Scholar

  • Calvo, M. (2008) Minerales de Aragón. Prames, Zaragoza. 463 pp.Google Scholar

  • Chun, C.O.J., Delaney, M.L., and Zachos, J.C. (2010) Paleoredox changes across the Paleocene-Eocene thermal maximum, Walvis Ridge (ODP Sites 1262, 1263, and 1266): Evidence from Mn and U enrichment factors. Paleoceanography, 25, PA 4202.Web of ScienceGoogle Scholar

  • Dickens, G.R. (2011) Down the rabbit hole: Towards appropriate discussion of methane release from gas hydrate systens during the Paleocene-Eocene thermal maximum and other past hyperthermal events. Climate of the Past, 7, 831-846.Web of ScienceGoogle Scholar

  • Dickens, G.R., O’Neil, J.R., Rea, D.K., and Owen, R.M. (1995) Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 19, 965-971.Google Scholar

  • Dunkley-Jones, T., Lunt, D.J., Schmidt, D.N., Ridgwell, A., Sluijs, A., Valdes, P.J., and Maslin, M. (2013) Climate model and proxy data constraints on ocean warming across the Paleocene-Eocene Thermal Maximum. Earth-Science Reviews, 125, 123-145.Web of ScienceGoogle Scholar

  • Farkas, J., Boehm, F., Wallmann, K., Blenkinsop. J., Eisenhauer, A., van Geldern, R., Munnecke, A., Voigt, S, and Veizer, J. (2007) Calcium isotope record of Phanerozpic oceans: implications for chemical evolution of seawater and its causative mechanisms. Geochimica et Cosmochimica Acta, 71, 5117-5134.Google Scholar

  • Fleeger, C.R., Heaney, P.J., and Post, J.E. (2013) A time-resolved X-ray diffraction study of Cs exchange into hexagonal H-birnessite. American Mineralogist, 98, 671-679.Google Scholar

  • Foster, L.C., Schmidt, D.N., Thomas, E., Arndt, S., and Ridgwell, A. (2013) Surviving rapid climate change in the deep-sea during the Paleogene hyperthermals. Proceedings of the National Academy of Sciences, 110, 9273-9276.Google Scholar

  • Gingele, F.X., and Kasten, S. (1994) Solid-phase manganese in Southeast Atlantic sediments: implications for paleoenvironments. Marine Geology, 121, 317-332.Google Scholar

  • González, F. J., Somoza, L., Lunar, R., Martínez-Frías, J., Martín Rubí, J.A., Torres, T., Ortiz, J.E., Díaz del Río, V., Pinheiro, L.M., and Magãlhaes, V.H. (2009) Hydrocarbon-derived ferromanganese nodules in carbonate-mud mounds from the Gulf of Cadiz: Mudbreccia sediments and clasts as nucleation sites. Marine Geology, 261, 64—81.Google Scholar

  • González, F.J., Somoza, L., Leon, R., Mdialdea, T., Torres, T., Ortiz, J.E., Lunar, R., Martinez-Frias, J., and Merinero, R. (2012) Ferromanganese nodules and micro-hardgrounds associated with the Cadiz Contourite Channel (NE Atlantic): Palaeoenvironmental records of fluid venting and bottom currents. Chemical Geology, 310-311, 56-78.Web of ScienceGoogle Scholar

  • Grice, J.D. Gartrell, B., Gault, R.A., and Van Velthuizen, J. (1994) Ernienickelite, NiMn3O7·3H2O, a new mineral species from the Siberia complex, Western Australia: Comments on the crystallography of the calcophanite group. Canadian Mineralogist 32, 333-337.Google Scholar

  • Guiyin, Y., Shanghua, Z., Mingkai, Z., Jianping, D. and, Deyu, L. (1992) Jianshuiite—A new magnesic mineral of chalcophanite group. Acta Mineralogica Sinica, 12, 69–77 (in Chinese with English abstract).Google Scholar

  • Hammersley, A.P, Svensson, S.O., Hanfland, M., Fitch, A.N., and Hausermann, D. (1996) Two-dimensional detector software: From real detector to idealized image or two-theta scan. High Pressure Research, 14, 235-248.Google Scholar

  • Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.J., Sverjensky, D.M., and Yang, H. (2008) Mineral evolution. American Miner-alogist, 93, 1693-1720.Google Scholar

  • Hönisch, B., Ridgwell, A., Schmidt, D.N., Thomas, E., Gibbs, S.J., Sluijs, A., Zeebe, R., Kump, L., Martindale, R.C., Greene, S.E., and others. (2012) The geological record of ocean acidification. Science, 335, 1058-1963.Web of ScienceGoogle Scholar

  • Larson, A.C., and Von Dreele, R.B. (2006) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86-748.Google Scholar

  • Larson, E.E., and Walker, T.R. (1975) Development of chemical remanent magnetization during early stages of red-bed formation in late Cenozoic sediments, Baja, California. The Geological Society of America Bulletin, 86, 639-650.Google Scholar

  • Lopano, C.L., Heaney, P. J., Post, J.E., Hanson, J., and Komarneni, S. (2007) Time-resolved structural analysis of K- and Ba-exchanged reactions with synthetic Na-birnessite using synchrotron X-ray diffraction. American Mineralogist, 92, 380-387.Web of ScienceGoogle Scholar

  • Lopano, C.L., Heaney, P.J., and Post, J.E. (2009) Cs-exchange in birnessite: Reaction mechanisms inferred from time-resolved X-ray diffraction and transmission electron microscopy. American Mineralogist, 94, 816-826.Google Scholar

  • Ma, Z., Gray, E., Thomas, E., Murphy, B., Zachos, J.C., and Paytan, A. (2014) Carbon sequestration during the Paleocene-Eocene Thermal maximum by an efficient biological pump. Nature Geoscience, 7, 382-388.Web of ScienceGoogle Scholar

  • Manceau, A., Gorshkov, A.I., and Drits, VA. (1992) Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: Part II. Information from EXAFS spectroscopy and electron and X-ray diffraction. American Mineralogist, 77, 1144-1157.Google Scholar

  • Mangini, A., Jung, M., and Luakenmann, S. (2001) What do we learn from peaks of uranium and of manganese in deep-sea sediments? Marine Geology, 177, 63-78.Google Scholar

  • McCarren, H., Thomas, E., Hasegawa, T., Roehl, U., and Zachos, J.C. (2008) Depth-dependency of the Paleocene-Eocene Carbon Isotope Excursion: Paired benthic and terrestrial biomarker records (ODP Leg 208, Walvis Ridge). Geo-chemistry, Geophysics, Geosystems, 9, Q10008, doi: 10.1029/2008GC002116.Web of ScienceCrossrefGoogle Scholar

  • McInerney, F.A., and Wing, S.L. (2011) The Paleocene-Eocene Thermal maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annual Review of Earth and Planetary Sciences, 39, 489-516.Web of ScienceGoogle Scholar

  • Moffett, J.W., and Ho, J. (1996) Oxidation of cobalt and manganese in seawater via a common microbially mediated pathway. Geochimica et Cosmochimica Acta, 60, 3415-3424.Google Scholar

  • Paelike, C., Delaney, M.L., and Zachos, J. (2014) Deep-sea redox across the Paleocene-Eocene thermal maximum. Geochemistry, Geophysics, Geosystems, 15, 1038-1053.Google Scholar

  • Post, J.E., and Appleman, D.E. (1988) Chalcophanite, ZnMn3O7·3H2O: New crystal-structure determinations. American Mineralogist, 73, 1401-1404.Google Scholar

  • Post, J.E., and Bish, D.L. (1989) Rietveld refinement of crystal structures using powder X-ray diffraction data. Reviews in Mineralogy, 20, 277-308.Google Scholar

  • Post, J.E., and Heaney, P.J. (2014) Time-resolved synchrotron X-ray diffraction study of the dehydration behavior of chalcophanite. American Mineralogist, 99, 1956-1961.Google Scholar

  • Potter, R.M., and Rossman, G.R. (1979) Mineralogy of manganese dendrites and coatings. American Mineralogist, 64, 1219-1226.Google Scholar

  • Ridgwell, A., and Schmidt, D. N. (2010) Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nature Geoscience, 3, 196-200.Google Scholar

  • Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751-767.Google Scholar

  • Stanley, S.M., and Hardie, L.A. (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144, 3-19.Google Scholar

  • Stephens, P W. (1999) Phenomenological model of anisotropic peak broadening in powder diffraction. Journal of Applied Crystallography, 32, 281-289.Google Scholar

  • Takeno, N. (2005) Atlas of Eh-pH diagrams. Geological Survey of Japan Open File Report no. 419, 102 pp.Google Scholar

  • Tebo, B.M., Bargar, J.R., Clement, B.G., Dick, G.J., Murray, K.J., Parker, D., Verity, R., and Webb, S.M. (2004) Biogenic Manganese oxides: Properties and mechanisms of formation. Annual Reviews of Earth and Planetary Sciences, 32, 287-328.Google Scholar

  • Thomas, E., and Shackleton, N.J. (1996) The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies, Geological Society of London, Special Publication, 101, 401-441.Google Scholar

  • Thompson, P., Cox, D.E., and Hastings, J.B. (1987) Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3. Journal of Applied Crystallography, 20, 79-83.Google Scholar

  • Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210-213.Web of ScienceGoogle Scholar

  • Wadsley, A.D. (1955) The crystal structure of chalcophanite, ZnMn3O7·3H2O. Acta Crystallographica, 8, 165-172.Google Scholar

  • Winguth, A.M.E., Thomas, E., and Winguth, C. (2012) Global decline in ocean ventilation, oxygenation, and productivity during the Paleocene-Eocene Thermal Maximum: Implications for the benthic extinction, Geology, 40, 263-266.Web of ScienceGoogle Scholar

  • Zachos, J.C., Kroon, D., Blum, P, Bowles, J., Gaillot, P, Hasegawa, T., Hathorne, E. C., Hodell, D.A., Kelly, D.C., Jung, J., and others. (2004) Leg 208: Early Cenozoic Extreme Climates: The Walvis Ridge Transect, 6 March-6 May 2003, Proceedings of the Ocean Drilling Program, Initial Reports, 208, Texas A&M University, College Station, Texas.Google Scholar

  • Zachos, J.C., Röhl, U., Schellenberg, S.A., Sluijs, A., Hodell, D.A., Kelly, D.C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L.J., McCarren, H., and Kroon, D. (2005) Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science, 308, 1611-1615.Google Scholar

About the article

Received: 2015-03-06

Accepted: 2015-09-01

Published Online: 2016-02-18

Published in Print: 2016-02-01

Citation Information: American Mineralogist, Volume 101, Issue 2, Pages 407–414, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5347.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in