Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 101, Issue 2

Issues

Interpretation of the infrared spectra of the lizardite-nepouite series in the near- and mid-infrared range

Fabien Baron
  • Corresponding author
  • Université de Poitiers, CNRS-UMR 7285 IC2MP, HydrASA, Bât. 8, 5 rue Albert Turpain, TSA 51106, 86073 Poitiers Cedex 9, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sabine Petit
  • Université de Poitiers, CNRS-UMR 7285 IC2MP, HydrASA, Bât. 8, 5 rue Albert Turpain, TSA 51106, 86073 Poitiers Cedex 9, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-18 | DOI: https://doi.org/10.2138/am-2016-5352

Abstract

A series of 1:1 silicate clays of the lizardite-nepouite series [Si2Mg3–xNixO5(OH4) with x = 0, 0.5, 1, 1.5, 2, 2.5, and 3] was synthesized at 220 °C during 7 days from coprecipitated gels in hydrothermal conditions. A clear relationship was evidenced between the d(06–33) and the Ni/Mg ratio of the synthesized samples following a Vegard’s law and suggested a random distribution of octahedral cations. For the first time, infrared spectra of this series were given in both near and mid-infrared spectral regions (250–7500 cm–1). Notably, the bands due to the OH stretching vibrations and those of their first overtones in the lizardite-nepouite series were attributed. The combination bands observed in the near infrared region for both end-members could be attributed thanks to combinations of two or three middle-infrared features. Some of the observed combination bands are clearly linked to combination of different vibrational groups.

Infrared spectroscopy is simple to use and is a powerful tool to study the crystal chemistry of garnierites. More broadly, the improvement of band attributions especially in near infrared contributes to develop the infrared analyses in field geology and remote sensing.

Keywords: Lizardite; nepouite; infrared spectroscopy; near infrared; mid-infrared; synthesis; nickel; clay minerals; serpentine; phyllosilicates; garnierite

References cited

  • Anbalagan, G., Sivakumar, G., Prabakaran, A.R., and Gunasekaran, S. (2010) Spectroscopic characterization of natural chrysotile. Vibrational Spectroscopy, 52, 122–127.Google Scholar

  • Andrieux, P., and Petit, S. (2010) Hydrothermal synthesis of dioctahedral smectites: The Al-Fe3+ chemical series. Part I: Influence of experimental conditions. Applied Clay Science, 48, 5–17.Google Scholar

  • Balan, E., Saitta, A.M., Mauri, F., Lemaire, C., and Guyot, F. (2002) First-principles calculation of the infrared spectrum of lizardite. American Mineralogist, 87, 1286–1290.Google Scholar

  • Baron, F., Pushparaj, S.S.C., Fontaine, C., Sivaiah, M.V., Decarreau, A., and Petit, S. (2016) Microwave-assisted hydrothermal synthesis of Ni-Mg layered silicate clays. Current Microwave Chemistry, 3, 85–89.Google Scholar

  • Bishop, J.L., Lane, M.D., Dyar, M.D., and Brown, A.J. (2008) Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas. Clay Minerals, 43, 35–54.Google Scholar

  • Bowen, B.B., Martini, B.A., Chan, M.A., and Parry, W.T. (2007) Reflectance spectroscopic mapping of diagenetic heterogeneities and fluid-flow pathways in the Jurassic Navajo Sandstone. AAPG Bulletin, 91, 173–190.Google Scholar

  • Brandmeier, M., Erasmi, S., Hansen, C., Höweling, A., Nitzsche, K., Ohlendorf, T., Mamani, M., and Wörner, G. (2013) Mapping patterns of mineral alteration in volcanic terrains using ASTER data and field spectrometry in Southern Peru. Journal of South American Earth Sciences, 48, 296–314.Google Scholar

  • Brindley, G.W., and Brown, G. (1980) Crystal structures of clay minerals and their X-ray identification, 495 p. The Mineralogical Society, London.Google Scholar

  • Brindley, G.W., and Hang, P.T. (1973) The nature of garnierites: I, structures, chemical compositions and color characteristics. Clays and Clay Minerals, 21, 27–40.Google Scholar

  • Brindley, G.W., Bish, D.L., and Wan, H.M. (1979) Compositions, structures, and properties of nickel-containing minerals in the kerolite-pimelite series. American Mineralogist, 64, 615–625.Google Scholar

  • Butt, C.R.M., and Cluzel, D. (2013) Nickel laterite ore deposits: Weathered serpentinites. Elements, 9, 123–128.Google Scholar

  • Cariati, F., Erre, L., Micera, G., Piu, P., and Gessa, C. (1981) Water molecules and hydroxyl groups in montmorillonites as studied by near infrared spectroscopy. Clays and Clay Minerals, 29, 157–159.Google Scholar

  • Cariati, F., Erre, L., Micera, G., Piu, P., and Gessa, C. (1983a) Effects of layer charge on the near-infrared spectra of water molecules in smectites and vermiculites. Clays and Clay Minerals, 31, 447–449.Google Scholar

  • Cariati, F., Erre, L., Micera, G., Piu, P., and Gessa, C. (1983b) Polarization of water molecules in phyllosilicates in relation to exchange cations as studied by near infrared spectroscopy. Clays and Clay Minerals, 31, 155–157.Google Scholar

  • Chen, X., Warner, T.A., and Campagna, D.J. (2007) Integrating visible, near-infrared and short-wave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada. Remote Sensing of Environment, 110, 344–356.Google Scholar

  • Chryssikos, G.D., Gionis, V., Kacandes, G.H., Stathopoulou, E.T., Suárez, M., García-Romero, E., and Río, M.S.D. (2009) Octahedral cation distribution in palygorskite. American Mineralogist, 94, 200–203.Google Scholar

  • Ciurczak, E.W. (2006) Near-infrared spectroscopy, In S. Ahuja and N. Jespersen Eds., Modern Instrumental Analysis, 157–176. Elsevier, Amsterdam.Google Scholar

  • Dumas, A., Martin, F., Le Roux, C., Micoud, P., Petit, S., Ferrage, E., Brendlé, J., Grauby, O., and Greenhill-Hooper, M. (2013) Phyllosilicates synthesis: a way of accessing edges contributions in NMR and FTIR spectroscopies. Example of synthetic talc. Physics and Chemistry of Minerals, 40, 361–373.Google Scholar

  • Farmer, V.C. (1974) The Infrared Spectra of Minerals, 539 p. The Mineralogical Society, London.Google Scholar

  • Farmer, V.C. (1998) Differing effects of particle size and shape in the infrared and Raman spectra of kaolinite. Clay Minerals, 33, 601–604.Google Scholar

  • Faust, G.T. (1966) The hydrous nickel-magnesium silicates—The garnierite group. American Mineralogist, 51, 279–298.Google Scholar

  • Frondel, C., and Ito, J. (1975) Zinc-rich chlorites from Franklin, New Jersey. Neues Jahrbuch für Mineralogie Abhandlungen, 123, 111–115.Google Scholar

  • Frost, R.L., Kloprogge, J.T., and Ding, Z. (2002) Near-infrared spectroscopic study of nontronites and ferruginous smectite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58, 1657–1668.Google Scholar

  • Fuchs, Y., Linares, J., and Mellini, M. (1998) Mössbauer and infrared spectrometry of lizardite-1T from Monte Fico, Elba. Physics and Chemistry of Minerals, 26, 111–115.Google Scholar

  • Gates, W.P. (2008) Cation mass-valence sum (CM-VS) approach to assigning OH-bending bands in dioctahedral smectites. Clays and Clay Minerals, 56, 10–22.Google Scholar

  • Gionis, V., Kacandes, G.H., Kastritis, I.D., and Chryssikos, G.D. (2006) On the structure of palygorskite by mid- and near-infrared spectroscopy. American Mineralogist, 91, 1125–1133.Google Scholar

  • Glassere, E. (1907) Note sur une espèce minérale nouvelle, la Népouite, silicate hydraté de nickel et de magnésie. Bulletin de la Société Française de Minéralogie, 30, 17–28.Google Scholar

  • Gleeson, S.A., Herrington, R.J., Durano, J., Velasquez, C.A., and Koll, G. (2004) The mineralogy and geochemistry of the Cerro Matoso S.A. Ni-laterite deposit, Montelibano, Colombia. Economic Geology, 99, 1197–1213.Google Scholar

  • Hunt, G.R., and Salisbury, J.W. (1970) Visible and infrared spectra of minerals and rocks: I. Silicate minerals. Modern Geology, 1, 283–300.Google Scholar

  • Madejová, J., Balan, E., and Petit, S. (2011) Advances in the characterization of industrial minerals. In G.E. Christidis, Ed., Application of Vibrational Spectroscopy to the Characterization of Phyllosilicates and Other Industrial Minerals, p. 171–226. The Mineralogical Society, London.Google Scholar

  • Maksimovich, Z. (1973) Izomorfnaya seriya lizardit-nepuit (The isomorphous series lizardite-nepouite). Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 102, 143–149.Google Scholar

  • Mano, E.S., Caner, L., Petit, S., Chaves, A.P., and Mexias, A.S. (2014) Mineralogical characterization of Ni-bearing smectites from Niquelândia, GO—Brazil. Clay Minerals, 62, 325–336.Google Scholar

  • Mellini, M. (1982) The crystal structure of lizardite 1T; hydrogen bonds and polytypism. American Mineralogist, 67, 587–598.Google Scholar

  • Mikheev, V.I. (1957) X-ray Determination of Minerals (Rentgenovskii Opredelitel’ Mineralov), 820 p. Gosgeoltekhizdat, Moscow.Google Scholar

  • Mondésir, H., and Decarreau, A. (1987) Synthèse entre 25 et 200°C de lizardites Ni-Mg. Mesure des coefficients de partage solide-solution aqueuse pour le couple Ni-Mg dans les lizardites. Bulletin de Minéralogie, 110, 409–426.Google Scholar

  • Montoya, J.W., and Baur, G.S. (1963) Nickeliferous serpentines, chlorites, and related minerals found in two lateritic ores. American Mineralogist, 48, 1227–1238.Google Scholar

  • Petit, S. (2005) The application of vibrational spectrocopy to clay minerals and layered double hydroxides. In T. Kloprogge, Ed., Crystal-Chemistry of Talc: A NIR and MIR spectroscopic approach, p. 41–64. The Clay Minerals Society, Aurora, Colorado.Google Scholar

  • Petit, S. (2006) Fourier transform infrared spectroscopy. In F. Bergaya and G. Lagaly, Eds., Handbook of Clay Science, p. 909–918. Elsevier, Amsterdam.Google Scholar

  • Petit, S., Decarreau, A., Martin, F., and Buchet, R. (2004) Refined relationship between the position of the fundamental OH stretching and the first overtones for clays. Physics and Chemistry of Minerals, 31, 585–592.Google Scholar

  • Petit, S., Decarreau, A., Gates, W., Andrieux, P., and Grauby, O. (2015) Hydrothermal synthesis of dioctahedral smectites: The Al-Fe3+ chemical series. Part II: Crystal-chemistry. Applied Clay Science, 104, 96–105.Google Scholar

  • Prencipe, M., Noel, Y., Bruno, M., and Dovesi, R. (2009) The vibrational spectrum of lizardite-1T [Mg3Si2O5(OH)4] at the Γ point: A contribution from an ab initio periodic B3LYP calculation. American Mineralogist, 94, 986–994.Google Scholar

  • Robin, V., Petit, S., Beaufort, D., and Prêt, D. (2013) Mapping kaolinite and dickite in sandstone thin sections using infrared microspectroscopy. Clays and Clay Minerals, 61, 141–151.Google Scholar

  • Savitzky, A., and Golay, M.J.E. (1964) Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 1627–1639.Google Scholar

  • Serna, C.J., White, J.L., and Velde, B.D. (1979) The effect of aluminium on the infra-red spectra of 7 Å trioctahedral minerals. Mineralogical Magazine, 43, 141–147.Google Scholar

  • Shannon, R. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.Google Scholar

  • Springer, G. (1974) Compositional and structural variations in garnierites. Canadian Mineralogist, 12, 381–388.Google Scholar

  • Di Tommaso, I., and Rubinstein, N. (2007) Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews, 32, 275–290.Google Scholar

  • Trescases, J.J. (1975) L’Évolution géochimique supergène des roches ultrabasiques en zone tropicale formation des gisements nickélifères de Nouvelle-Calédonie, 259 p. Office de la recherche scientifique et technique outre-mer, Paris.Google Scholar

  • Trescases, J.J. (1979) Remplacement progressif des silicates par les hydroxydes de fer et de nickel dans les profils d’altération tropicale des roches ultrabasiques; accumulation résiduelle et épigénie. Sciences Géologique, Bulletin, 32, 181–188.Google Scholar

  • Wells, M.A., Ramanaidou, E.R., Verrall, M., and Tessarolo, C. (2009) Mineralogy and crystal chemistry of “garnierites” in the Goro lateritic nickel deposit, New Caledonia. European Journal of Mineralogy, 21, 467–483.Google Scholar

  • Whittaker, E.J.W., and Zussman, J. (1956) The characterization of serpentine minerals by X-ray diffraction. Mineralogical Magazine, 31, 107–126.Google Scholar

  • Wilkins, R.W.T., and Ito, J. (1967) Infrared spectra of some synthetic talcs. American Mineralogist, 52, 1649–1661.Google Scholar

  • Wojdyr, M. (2010) Fityk: a general-purpose peak fitting program. Journal of Applied Crystallography, 43, 1126–1128.Google Scholar

About the article

Received: 2015-03-11

Accepted: 2015-09-09

Published Online: 2016-02-18

Published in Print: 2016-02-01


Manuscript handled by Julien Mercadier


Citation Information: American Mineralogist, Volume 101, Issue 2, Pages 423–430, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5352.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in