Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 101, Issue 2

Issues

In situ spectroscopic study of water intercalation into talc: New features of 10 Å phase formation

Sergey V. Rashchenko
  • Corresponding author
  • Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, 3 Koptyug Avenue, 630090 Novosibirsk, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Yu. Likhacheva
  • Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, 3 Koptyug Avenue, 630090 Novosibirsk, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergey V. Goryainov
  • Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, 3 Koptyug Avenue, 630090 Novosibirsk, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander S. Krylov
  • Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 50-38 Akademgorodok, 660036 Krasnoyarsk, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Konstantin D. Litasov
  • Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, 3 Koptyug Avenue, 630090 Novosibirsk, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-18 | DOI: https://doi.org/10.2138/am-2016-5356

Abstract

The synthesis of 10 Å phase via the reaction of talc plus water at 8 GPa and 500 °C was studied by in situ Raman spectroscopy using a diamond-anvil cell. The initial fast (2 h) incorporation of interlayer H2O molecules into the talc structure is traced by gradual growth of new OH stretching bands at 3592 and 3621 cm-1 and the shift of several framework bands. Further monitoring at HP-HT conditions over 7 h reveals gradual weakening of the 3592 cm-1 band, which can probably be related to the onset of the formation of “long-run” 10 Å phase through the appearance of silanol groups following the model proposed by Pawley et al. (2010), influencing the interlayer hydrogen bonding.

Keywords: 10 Å phase; talc; water transport; subduction

References Cited

  • Bauer, J.F., and Sclar, C.B. (1981) The 10 Å phase in the system MgO-SiO2-H2O. American Mineralogist, 66, 576-585.Google Scholar

  • Chinnery, N.J., Pawley, A.R., and Clark, S.M. (1999) In situ observation of theformation of 10 Å phase from talc + H2O at mantle pressures and temperatures.Science, 286, 940-942.Google Scholar

  • Comodi, P. (2005) The 10 Å phase: Crystal structure from single-crystal X-ray data. American Mineralogist, 90, 1012-1016.Google Scholar

  • Comodi, P., Cera, F., Dubrovinsky, L., and Nazzareni, S. (2006) The high-pressure behaviour of the 10 Å phase: A spectroscopic and diffracto metric study up to 42 GPa. Earth and Planetary Science Letters, 246, 444-457.Google Scholar

  • Comodi, P., Cera, F., Nazzareni, S., and Dubrovinsky, L. (2007) Raman spectroscopy of the 10 Å phase at simultaneously HP-HT. European Journal of Mineralogy, 19, 623-629.Web of ScienceGoogle Scholar

  • Dorbath, C.C., Gerbault, M., Carlier, G., and Guiraud, M. (2008) The double seismiczone of the Nazca plate in Northern Chile: High resolution velocity structure, petrological implications and thermo-mechanical modelling. Geochemistry,Geophysics, Geosystems, 9, 1-29.Web of ScienceGoogle Scholar

  • Dvir, O., Pettke, T., Fumagalli, P., and Kessel, R. (2011) Fluids in the peridotite-water system up to 6 GPa and 800 °C: New experimental constrains on dehy-dration reactions. Contributions to Mineralogy and Petrology, 161, 829-844.Web of ScienceGoogle Scholar

  • Fumagalli, P., and Poli, S. (2005) Experimentally determined phase relations inhydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. Journal of Petrology, 46, 555-578.Google Scholar

  • Fumagalli, P., Stixrude, L., Poli, S., and Snyder, D. (2001) The 10 Å phase: A high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere. Earth and Planetary Science Letters, 186, 125-141.Google Scholar

  • Jacobsen, S.D., and van der Lee, S., Eds. (2006) Earth’s Deep Water Cycle. American Geophysical Union, Washington, D.C.Google Scholar

  • Khisina, N.R., and Wirth, R. (2008) Nanoinclusions of high-pressure hydroussilicate, Mg3Si4O10(OH)2·nH2O (10 Å phase), in mantle olivine: Mechanismsof formation and transformation. Geochemistry International, 46, 319-327.Google Scholar

  • Khodyrev, O.Y., and Agoshkov, V.M. (1986) Phase transformations of serpentinein the system MgO-SiO2-H2O at the pressure range 40 to 80 kbar. Geokhi-miya, 264-269.Google Scholar

  • Kovacs, I., Green, D.H., Rosenthal, A., Hermann, J., O’Neill, H.St.C., Hibberson, W.O., and Udvardi, B. (2012) An experimental study of water in nominally anhydrous minerals in the upper mantle near the water-saturated solidus.Journal of Petrology, 53, 2067-2093.Google Scholar

  • Ohtani, E., Litasov, K., Hosoya, T., Kubo, T., and Kondo, T. (2004) Water transportinto the deep mantle and formation of a hydrous transition zone. Physics of the Earth and Planetary Interiors, 143, 255-269.Google Scholar

  • Parry, S.A., Pawley, A.R., Jones, R.L., and Clark, S.M. (2007) An infrared spectroscopic study of the OH stretching frequencies of talc and 10 Å phase to 10GPa. American Mineralogist, 92, 525-531.Google Scholar

  • Pawley, A.R., and Wood, B.J. (1995) The high-pressure stability of talc and 10 Å phase—potential storage sites for H2O in subduction zones. AmericanMineralogist, 80, 998-1003.Google Scholar

  • Pawley, A.R., Welch, M.D., Lennie, A.R., and Jones, R.L. (2010) Volume behavior of the 10 Å phase at high pressures and temperatures, with implications for H2O content. American Mineralogist, 95, 1671-1678.Web of ScienceGoogle Scholar

  • Pawley, A.R., Chinnery, N.J., Clark, S.M., and Walter, M.J. (2011) Experimental study of the dehydration of 10 Å phase, with implications for its H2O content and stability in subducted lithosphere. Contributions to Mineralogy and Petrology, 162, 1279-1289.Web of ScienceGoogle Scholar

  • Phillips, B.L., Mason, H.E., and Guggenheim, S. (2007) Hydrogen bonded silanols in the 10 Å phase: Evidence from NMR spectroscopy. American Mineralogist, 92, 1474-1485.Google Scholar

  • Rashchenko, S.V., Likhacheva, A.Y., and Bekker, T.B. (2013) Preparation of amacrocrystalline pressure calibrant SrB4O7:Sm2+ suitable for the HP-HT powder diffraction. High Pressure Research, 33, 720-724.Google Scholar

  • Rashchenko, S.V., Kurnosov, A., Dubrovinsky, L., and Litasov, K.D. (2015) Revised calibration of the Sm:SrB4O7 pressure sensor using the Sm-dopedyttrium-aluminum garnet primary pressure scale Journal of Applied Physics, 117, 145902.Web of ScienceGoogle Scholar

  • Ringwood, A.E., and Major, A. (1967) High-pressure reconnaissance investigations in the system Mg2SiO4-MgO-H2O. Earth and Planetary Science Letters, 2, 130-133.Google Scholar

  • Rosasco, G.J., and Blaha, J.J. (1980) Raman micro-probe spectra and vibrational-mode assignments of talc. Applied Spectroscopy, 34, 140-144.Google Scholar

  • Sclar, C.B., and Carrison, L.C. (1966) High-pressure reactions and shear strengthof serpentinized dunite. Science, 153, 1285-1286.Google Scholar

  • Schmidt, M.W., and Poli, S. (1998) Experimentally based water budgets for dehy-drating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163, 361-379.Google Scholar

  • Schmidt, M.W., and Poli, S. (2014). Devolatilization during subduction. In H.D. Holland and K.K. Turekian, Eds., Treatise on Geochemistry, 2nd ed., p. 669-701. Elsevier, Amsterdam.Google Scholar

  • Syracuse, E.M., van Keken, P.E., and Abers, G.A. (2010) The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors, 183, 73-90.Google Scholar

  • Ulmer, P., and Trommsdorff, V. (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science, 268, 858-861.Google Scholar

  • Welch, M.D., Pawley, A.R., Ashbrook, S.E., Mason, H.E., and Phillips, B.L. (2006) Si vacancies in the 10 Å phase. American Mineralogist, 91, 1707-1710.Google Scholar

  • Wojdyr, M. (2010) Fityk: a general-purpose peak fitting program. Journal of Applied Crystallography, 43, 1126-1128.Web of ScienceGoogle Scholar

  • Wunder, B., and Schreyer, W. (1992) Metastability of the 10 Å phase in the system MgO-SiO2-H2O (MSH): What about hydrous MSH phases in subduction zones? Journal of Petrology, 33, 877-889.Google Scholar

  • Yamamoto, K., and Akimoto, S. (1977) The system MgO-SiO2-H2O at high pressures and temperatures—stability field for hydroxylchondrodite, hydroxylclinohumite and 10 Å phase. American Journal of Science, 277, 288-312.Google Scholar

About the article

Received: 2015-03-21

Accepted: 2015-09-09

Published Online: 2016-02-18

Published in Print: 2016-02-01


Manuscript handled by G. Ddiego Gatta.


Citation Information: American Mineralogist, Volume 101, Issue 2, Pages 431–436, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5356.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in