Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

See all formats and pricing
More options …
Volume 101, Issue 2


Maruyamaite, K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, a potassium-dominant tourmaline from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan: Description and crystal structure

Aaron Lussier
  • Corresponding author
  • Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Neil A. Ball / Frank C. Hawthorne / Darrell J. Henry
  • Corresponding author
  • Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rentaro Shimizu
  • Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yoshihide Ogasawara
  • Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tsutomu Ota
  • Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for the Study of the Earth’s Interior, Okayama University, Misasa, Tottori, 682-0193, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-18 | DOI: https://doi.org/10.2138/am-2016-5359


Maruyamaite, ideally K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, was recently approved as the first K-dominant mineral-species of the tourmaline supergroup. It occurs in ultrahigh-pressure quartzofeldspathic gneisses of the Kumdy-Kol area of the Kokchetav Massif, northern Kazakhstan. Maruyamaite contains inclusions of microdiamonds, and probably crystallized near the peak pressure conditions of UHP metamorphism in the stability field of diamond. Crystals occur as anhedral to euhedral grains up to 2 mm across, embedded in a matrix of anhedral quartz and K-feldspar. Maruyamaite is pale brown to brown with a white to very pale-brown streak and has a vitreous luster. It is brittle and has a Mohs hardness of ∼7; it is non-fluorescent, has no observable cleavage or parting, and has a calculated density of 3.081 g/cm3. In plane-polarized transmitted light, it is pleochroic, O = darkish brown, E = pale brown. Maruyamaite is uniaxial negative, ω = 1.634, ε = 1.652, both ±0.002. It is rhombohedral, space group R3m, a = 15.955(1), c = 7.227(1) Å, V = 1593(3) Å3, Z = 3. The strongest 10 X-ray dif- fraction lines in the powder pattern are [d in Å(I)(hkl)]: 2.581(100)(051), 2.974(85)(1̄32), 3.995 (69)(2̄40), 4.237(59)(2̄31), 2.046(54)(1̄62), 3.498(42)(012), 1.923(36)(3̄72), 6.415(23)(1̄11), 1.595(22)(5̄.10.0), 5.002(21)(021), and 4.610(20)(030). The crystal structure of maruyamaite was refined to an R1 index of 1.58% using 1149 unique reflections measured with MoKα X-radiation. Analysis by a combination of electron microprobe and crystal-structure refinement gave SiO2 36.37, Al2O3 31.50, TiO2 1.09, Cr2O3 0.04, Fe2O3 0.33, FeO 4.01, MgO 9.00, CaO 1.47, Na2O 0.60, K2O 2.54, F 0.30, B2O3(calc) 10.58, H2O(calc) 2.96, sum 100.67 wt%. The formula unit, calculated on the basis of 31 anions pfu with B = 3, OH = 3.24 apfu (derived from the crystal structure) and the site populations assigned to reflect the mean interatomic distances, is (K0.53Na0.19Ca0.260.02)ΣX=1.00(Mg1.19Fe0.552+Fe0.053+ Ti0.14Al1.07)□Y=3.00(Al5.00Mg1.00)(Si5.97Al0.03O18)(BO3)3(OH)3(O0.602F0.16OH0.24). Maruyamaite, ideally K(MgAl2) (Al5Mg)(BO3)3(Si6O18)(OH)3O, is related to oxy-dravite: ideally Na(MgAl2)(Al5Mg)(BO3)3(Si6O18)(OH)3O, by the substitution XK → XNa.

Keywords: Maruyamaite; tourmaline; new mineral; electron-microprobe analysis; optical properties; crystal-structure refinement; Kokchetav Massif; northern Kazakhstan; ultrahigh-pressure; microdiamond inclusions

References cited

  • Agrosì, G., Bosi, F., Lucchesi, S., Melchiorre, G., and Scandale, E. (2006) Mn-tourmaline crystals from island of Elba (Italy): Growth history and growth marks. American Mineralogist, 91, 944-952.Google Scholar

  • Bačík, P., Méres Š., and Uher, P. (2011) Vanadium-bearing tourmaline in metacherts from Chvojnica, Slovak Republic: crystal chemistry and multistage evolution. Canadian Mineralogist, 49, 195-206.Google Scholar

  • Berryman, E., Wunder, B., and Rhede, D. (2014) Synthesis of K-dominant tour-maline. American Mineralogist, 99, 539-542.Google Scholar

  • Bosi, F. (2008) Disordering of Fe2+ over octahedrally coordinated sites of tourma-line. American Mineralogist, 93, 1647-1653.Google Scholar

  • Bosi, F. (2010) Octahedrally coordinated vacancies in tourmaline: a theoretical approach. Mineralogical Magazine, 74, 1037-1044.Google Scholar

  • Bosi, F. (2011) Stereochemical constraints in tourmaline: from a short-range to a long-range structure. Canadian Mineralogist, 49, 17-27.Google Scholar

  • Bosi, F. (2013) Bond-valence constraints around the O1 site of tourmaline. Mineralogical Magazine, 77, 343-351.Google Scholar

  • Bosi, F., and Lucchesi, S. (2004) Crystal chemistry of the schorl-dravite series. European Journal of Mineralogy, 16, 335-344.Google Scholar

  • Bosi, F., and Lucchesi, S. (2007) Crystal chemical relationships in the tourmaline group: Structural constraints on chemical variability. American Mineralogist, 92, 1054-1063.Google Scholar

  • Bosi, F., and Skogby, H. (2013) Oxy-dravite, Na(Al2Mg)(Al5Mg)(Si6O18) (BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 98, 1442-1448.Google Scholar

  • Bosi, F., Lucchesi, S., and Reznitskii, L. (2004) Crystal chemistry of the dravite-chromdravite series. European Journal of Mineralogy, 16, 345-352.Google Scholar

  • Bosi, F., Balić-Žunić, T., and Surour, A.A. (2010) Crystal structure analysis of four tourmalines from the Cleopatra’s Mines (Egypt) and Jabal Zalm (Saudi Arabia), and the role of Al in the tourmaline group. American Mineralogist, 95, 510-518.Google Scholar

  • Burns, PC., MacDonald, D.J., and Hawthorne, F.C. (1994) The crystal chemistry of manganese-bearing elbaite. Canadian Mineralogist, 32, 31-41.Google Scholar

  • Clark, C.M., Hawthorne, F.C., and Ottolini, L. (2011) Fluor-dravite, NaMg3Al6Si6O18(BO3)3(OH)3F, a new mineral of the tourmaline group from the Crabtree emerald mine, Mitchell county, North Carolina: Description and crystal structure. Canadian Mineralogist, 49, 57-62.Google Scholar

  • Dutrow, B.L., and Henry, D.J. (2011) Tourmaline: A geologic DVD. Elements, 7, 301-306.Google Scholar

  • Ertl, A., Rossman, G.R., Hughes, J.M., London, D., Wang, Y, O’Leary, J.A., Dyar. M.D., Prowatke, S., Ludwig, T., and Tillmanns, E. (2010a) Tourmaline of the elbaite-schorl series from the Himalaya Mine, Mesa Grande, California: A detailed investigation. American Mineralogist, 95, 24-40.Google Scholar

  • Ertl, A., Marschall, H.R., Giester, G., Henry, D.J., Schertl, H.P., Ntaflos, T., Luvizotto, G.L., Nasdala, L., and Tillmanns, E. (2010b) Metamorphic ultrahigh-pressure tourmaline: Structure, chemistry, and correlations to P-T conditions. American Mineralogist 95 1-10Google Scholar

  • Grice, J.D., Ercit, T.S., and Hawthorne, F.C. (1993) Povondraite, a redefinition of the tourmaline ferridravite. American Mineralogist, 78, 433-436.Google Scholar

  • Hawthorne, F.C. (1996) Structural mechanisms for light-element variations in tourmaline. Canadian Mineralogist, 34, 123-132.Google Scholar

  • Hawthorne, F.C. (2002) Bond-valence constraints on the chemical composition of tourma-line. Canadian Mineralogist, 40, 789-797.Google Scholar

  • Hawthorne, F.C., and Dirlam, D.M. (2011) Tourmaline, the indicator mineral: From atomic arrangement to Viking navigation. Elements, 7, 307-312.Google Scholar

  • Hawthorne, F.C., and Henry, D.J. (1999) Classification of the minerals of the tourmaline group. European Journal of Mineralogy, 11, 201-215.Google Scholar

  • Hawthorne, F.C., MacDonald, D.J., and Burns, PC. (1993) Reassignment of cation site-occupancies in tourmaline: Al/Mg disorder in the crystal structure of dravite. American Mineralogist, 78, 265-270.Google Scholar

  • Hawthorne, F.C., Ungaretti, L., and Oberti, R. (1995) Site populations in minerals: terminology and presentation of results of crystal-structure refinement. Canadian Mineralogist, 33, 907-911.Google Scholar

  • Henry, D.J., and Dutrow, B.L. (1990) Ca substitution in Li-poor aluminous tour-maline. Canadian Mineralogist, 28, 111-124.Google Scholar

  • Henry, D.J., and Dutrow, B.L. (1996) Metamorphic tourmaline and its petrologic applications. Reviews in Mineralogy, 33, 503-557.Google Scholar

  • Henry, D.J., and Dutrow, B.L. (2011) The incorporation of fluorine in tourmaline: Internal crystallographic controls or external environmental influences? Canadian Mineralogist, 49, 41-56.Google Scholar

  • Henry, D.J., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B.L., Uher, P, and Pezzotta, F. (2011) Nomenclature of the tourmaline super-group minerals. American Mineralogist, 96, 895-913.Google Scholar

  • Hezel, D.C., Kalt, A., Marschall, H.R., Ludwig, T., and Meyer, H.-P. (2011) Major-element and Li, Be compositional evolution of tourmaline in an S-type granite-pegmatite system and its country rocks: an example from Ikaria, Aegean Sea, Greece. Canadian Mineralogist, 49, 321-340.Google Scholar

  • Hwang, S.L., Shen, P., Chu, H.T., Yui, T.F., Liou, J.G., Sobolev, N.V., and Shatsky, V.S. (2005) Crust-derived potassic fluid in metamorphic microdiamond. Earth and Planetary Science Letters, 231, 295-306.Google Scholar

  • Kaneko, Y., Maruyama, S., Terabayashi, M., Yamamoto, H., Ishikawa, M., Anma, R., Parkinson, C.D., Ota, T., Nakajima, Y., Katayama, I., Yamamoto, J., and Yamauchi, K. (2000) Geology of the Kokchetav UHP-HP metamorphic belt, Northern Kazakhstan. The Island Arc, 9, 264-283.Google Scholar

  • Ludwig, T., Marschall, H.R., Pogge von Strandmann, P.A.E., Shabaga, B.M., Fayek, M., and Hawthorne, F.C. (2011) A secondary ion mass spectrometry (SIMS) re-evaluation of B and Li isotopic compositions of Cu-bearing elbaite from three global localities. Mineralogical Magazine, 75, 2485-2494.Google Scholar

  • Lussier, A.J., and Hawthorne, F.C. (2011) Oscillatory zoned liddicoatite from central Madagascar. II. Compositional variations and substitution mechanisms. Canadian Mineralogist, 49, 89-104.Google Scholar

  • Lussier, A.J., Aguiar, P.M., Michaelis, V.K., Kroeker, S., Herwig, S., Abdu, Y., and Hawthorne, F.C. (2008) Mushroom elbaite from the Kat Chay mine, Momeik, near Mogok, Myanmar: I. Crystal chemistry by SREF, EMPA, MAS NMR and Mössbauer spectroscopy. Mineralogical Magazine, 72, 747-761.Google Scholar

  • Lussier, A.J., Hawthorne, F.C., Aguiar, P.M., Michaelis, V.K., and Kroeker, S. (2011a) Elbaite-liddicoatite from Black Rapids glacier, Alaska. Periodico di Mineralogia, 80, 57-73.Google Scholar

  • Lussier, A.J., Abdu, Y. Hawthorne, F.C., Michaelis, V.K., Aguiar, P.M., and Kroeker, S. (2011b) Oscillatory zoned liddicoatite from Anjanabonoina, central Madagascar. I. Crystal chemistry and structure by SREF and 11B and 27Al MAS NMR spectroscopy. Canadian Mineralogist, 49, 63-88.Google Scholar

  • MacDonald, D.J., and Hawthorne, F.C. (1995) The crystal chemistry of Si <--> Al substitution in tourmaline. Canadian Mineralogist, 33, 849-858.Google Scholar

  • MacDonald, D.J., Hawthorne, F.C., and Grice, J.D. (1993) Foitite, o[Fe22+(Al,Fe3+)] Al6Si6O18 (BO3)3(OH)4, a new alkali-deficient tourmaline: description and crystal structure. American Mineralogist, 78, 1299-1303.Google Scholar

  • Marschall, H.R., and Jiang, S.-Y (2011) Tourmaline Isotopes: No element left behind. Elements, 7, 313-319.Google Scholar

  • Marschall, H.R., Ludwig, T., Altherr, R., Kalt, A., and Tonarini, S. (2006) Syros metasomatic tourmaline: Evidence for very high-ô11B fluids in subduction zones. Journal of Petrology, 47, 1915-1942.Google Scholar

  • McKeown, D.A. (2008) Raman spectroscopy, vibrational analysis and heating of buergerite tourmaline. Physics and Chemistry of Minerals, 35, 259-270.Google Scholar

  • Nová, M., Povondra, P, and Selway, J.B. (2004) Schorl-oxy-schorl to dravite-oxydravite tourmaline from granitic pegmatites; examples from the Moldanubicum, Czech Republic. European Journal of Mineralogy, 16, 323-333.Google Scholar

  • Novák, M., Škoda, P., Filip, J., Macek, I., and Vaculovič, T. (2011) Compositional trends in tourmaline from intragranitic NYF pegmatites of the Třebíč Pluton, Czech Republic; electron microprobe, Mössbauer and LA-ICP-MS study. Canadian Mineralogist, 49, 359-380.Google Scholar

  • Novák, M., Ertl, A., Povondra, P, Galiová, M.V, Rossman, G.R., Pristacz, H., Prem, M., Giester, G., Gadas, P, and Škoda, R. (2013) Darrellhenryite, Na(LiAl2) Al6(BO3)3Si6O18 (OH)3O, a new mineral from the tourmaline supergroup. American Mineralogist, 98, 1886-1892.Google Scholar

  • Ogasawara, Y., Fukasawa, K., and Maruyama, S. (2002) Coesite exsolution from supersilicic titanite in UHP marble from the Kokchetav Massif, northern Kazakhstan. American Mineralogist, 87, 454-61.Google Scholar

  • Ota, T., Kobayashi, K., Katsura, T., and Nakamura, E. (2008a) Tourmaline break-down in a pelitic system: implications for boron cycling through subduction zones. Contributions to Mineralogy and Petrology, 155, 19-32.Google Scholar

  • Ota, T., Kobayashi, K., Katsura, T., and Nakamura, E. (2008b) Boron cycling by subducted lithosphere; insights from diamond-iferous tourmaline from the Kokchetav ultrahigh-pressure metamorphic belt. Geochimica et Cosmochimica Acta, 72, 3531-3541.Google Scholar

  • Pertlik, F., Ertl, A., Körner, W., Brandstätter, F., and Schuster, R. (2003) Na-rich dravite in the marbles from Friesach, Carinthia, Austria: Chemistry and crystal structure. Neues Jahrbuch für Mineralogie Monatshefte, 2003, 277-288.Google Scholar

  • Pouchou, J.L., and Pichoir, F. (1985) ‘PAP’ φ(ρZ) procedure for improved quantitative microanalysis. In J.T. Armstrong, Ed., Microbeam Analysis, 104-106. San Francisco Press, San Francisco, California.Google Scholar

  • Rancourt, D.G., and Ping, J.Y. (1991) Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy. Nuclear Instruments and Methods in Physics Research, B, 58, 85-97.Google Scholar

  • Selway, J.B., Černý, P., and Hawthorne, F.C. (1998a) Feruvite from lepidolite pegmatites at Red Cross lake, Manitoba. Canadian Mineralogist, 36, 433-439.Google Scholar

  • Selway, J.B., Novák, M., Hawthorne, F.C., Černý, P, Ottolini, L., and Kyser, T.K. (1998b) Rossmanite, [LiAl2]Al6Si6O18(BO3)3(OH), a new alkali-deficient tour-maline: Description and crystal structure. American Mineralogist, 83, 896-900.Google Scholar

  • Selway, J.B., Novák, M. Černý, P., and Hawthorne, F.C. (1999) Compositional evolution of tourmaline in lepidolite-subtype pegmatites. European Journal of Mineralogy, 11, 569-584.Google Scholar

  • Selway, J.B., Černý, P., Hawthorne, F.C., and Novâk, M. (2000a) The Tanco pegmatite at Bernic Lake, Manitoba. XIV. Internal tourmaline. Canadian Mineralogist, 38, 877-891.Google Scholar

  • Selway, J.B., Novâk, M., Černý, P., and Hawthorne, F.C. (2000b) The Tanco pegmatite at Bernic Lake, Manitoba. XIII. Exocontact tourmaline. Canadian Mineralogist, 38, 869-976.Google Scholar

  • Selway, J.B., Smeds, S-A., Černý, P., and Hawthorne, F.C. (2002) Compositional evolution of tourmaline in the petalite-subtype Nyköpingsgruvan pegmatites, Utö, Stockholm Archipelago, Sweden. GFF, 124, 93-102.Google Scholar

  • Shabaga, B.M., Fayek, M., and Hawthorne, F.C. (2010) Boron and lithium isotopic compositions as provenance indicators of Cu-bearing tourmalines. Mineralogical Magazine, 74, 241-255.Google Scholar

  • Sheldrick, G.M. (2008) A short History of SHELX. Acta Crystallographica, A64, 112-122.Google Scholar

  • Shimizu, R., and Ogasawara, Y. (2013) Diversity of potassium-bearing tourma-lines in diamondiferous Kokchetav UHP metamorphic rocks: a geochemical recorder from peak to retrograde metamorphic stages. Journal of Asian Earth Science, 63, 39-55.Google Scholar

  • Skogby, H., Bosi, F., and Lazor, P. (2012) Short-range order in tourmaline: a vibrational spectroscopic approach to elbaite. Physics and Chemistry of Minerals, 39, 811-816.Google Scholar

  • Taylor, M.C., Cooper, M.A., and Hawthorne, F.C. (1995) Local charge-compensation in hydroxyl-deficient uvite. Canadian Mineralogist, 33, 1215-1221.Google Scholar

  • van Hinsberg, V.J., and Marschall, H.R. (2007) Boron isotope and light element sector zoning in tourmaline: Implications for the formation of B-isotopic signatures. Chemical Geology, 238, 141-148.Google Scholar

  • van Hinsberg, V.J., and Schumacher, J.C. (2009) The geothermobarometric potential of tourmaline, based on experimental and natural data. American Mineralogist, 94, 761-770.Google Scholar

  • van Hinsberg, V.J., Henry, D.J., and Dutrow, B.L. (2011a) Tourmaline as a petrologic forensic mineral: A unique recorder of its geologic past. Elements, 7, 327-332.Google Scholar

  • van Hinsberg, V.J., Henry, D.J., and Marschall, H.R. (2011b) Tourmaline: an ideal indicator of its host environment. Canadian Mineralogist, 49, 1-16.Google Scholar

  • Wunder, B., Berryman, E., Plessen, B., Rhede, D., Koch-Müller, M., and Heinrich, W. (2015) Synthetic and natural ammonium-bearing tourmaline. American Mineralogist, 100, 250-256.Google Scholar

  • Zacek, V, Jirá, F., Petrov, A., and Hyrsl, J. (2000) Tourmalines of the povondraite- (oxy) dravite series from the cap rock of meta-evaporite in Alto Chapare, Cochabamba, Bolivia. Journal of the Czech Geological Society, 45, 3-12.Google Scholar

About the article

Received: 2015-03-11

Accepted: 2015-09-10

Published Online: 2016-02-18

Published in Print: 2016-02-01

Manuscript handled by Beda Hofmann

Citation Information: American Mineralogist, Volume 101, Issue 2, Pages 355–361, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5359.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in