Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

See all formats and pricing
More options …
Volume 101, Issue 2


The effect of phosphorus on manganocolumbite and mangaotantalite solubility in peralkaline to peraluminous granitic melts

Yong Tang
  • Key Laboratory of High-Temperature and High-Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hui Zhang
  • Corresponding author
  • Key Laboratory of High-Temperature and High-Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bing Rao
  • State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-18 | DOI: https://doi.org/10.2138/am-2016-5424


Solubility experiments of Mn-columbite (MnNb2O6) and Mn-tantalite (MnTa2O6) were conducted under water-saturated conditions in synthetic haplogranitic melts containing different amounts of phosphorus at 800 °C and 100 MPa. All experiments were carried out in cold-seal rapid quenching pressure vessels (RQV) with water as a pressure medium. Experimental results show that: (1) the solubilities of MnNb2O6 and MnTa2O6 in peralkaline melts are higher than those in peraluminous melts; (2) phosphorus has strong influence on the solubilities of MnTa2O6 and MnNb2O6 in peralkaline melts, KSpNb and KSpTa decrease from 104.89 × 10–4 mol2/kg2 and 107.62 × 10–4 mol2/kg2 for melts without P2O5 to 16.11 × 10–4 mol2/kg2 and 7.96 × 10–4 mol2/kg2 for melts containing ~4.00 wt% P2O5, respectively; (3) phosphorus has less influence on the solubilities of MnTa2O6 and MnNb2O6 in peraluminous melt, KSpNb decrease from 4.50 × 10–4 mol2/kg2 for melts without P2O5 to 0.73 × 10–4 mol2/kg2, and KSpTa from 3.57 × 10–4 mol2/kg2 to 0.14 × 10–4 mol2/kg2 for melts contaning ~5.00 wt% P2O5. Taking the structural role of phosphorus into account, P decreases the solubility of Mn-columbite and Mn-tantalite via competing for network modifiers.

Keywords: Columbite; tantalite; solubility; phosphorus; melt

References Cited

  • Acosta-Vigil, A., London, D., Morgan, G., and Dewers, T. (2003) Solubility of excess alumina in hydrous granitic melts in equilibrium with peraluminous minerals at 700–800 °C and 200 MPa, and applications of the aluminum saturation index. Contributions to Mineralogy and Petrology, 146(1), 100–119.Google Scholar

  • Acosta-Vigil, A., London, D., and Morgan, G.B. VI (2012) Chemical diffusion of major components in granitic liquids: Implications for the rates of homogenization of crustal melts. Lithos, 153, 308–323.Web of ScienceGoogle Scholar

  • Aseri, A.A., Linnen, R.L., Che, X.D., Thibault, Y., and Holtz, F. (2015) Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fluxed water-saturated haplogranitic melts. Ore Geology Reviews, 64, 736–746.Web of ScienceGoogle Scholar

  • Bartels, A., Holtz, F., and Linnen, R.L. (2010) Solubility of manganotantalite and manganocolumbite in pegmatitic melts. American Mineralogist, 95, 537–544.Web of ScienceGoogle Scholar

  • Chou, I.M. (1987) Oxygen buffer and hydrogen sensor technique at elevated pressures and temperatures. In H.L. Barnes and G.C. Ulmer, Eds., Hydrothermal Experiments Techniques, p. 61–99. Wiley, New York.Google Scholar

  • Dickinson, J.E. Jr., and Hess, P.C. (1985) Rutile solubility and titanium coordination in silicate melts. Geochimica et Cosmochimica Acta, 49(11), 2289–2296.Google Scholar

  • Ellison, A.J., and Hess, P.C. (1986) Solution behavior of +4 cations in high silica melts: petrologic and geochemical implications. Contributions to Mineralogy and Petrology, 94(3), 343–351.Google Scholar

  • Fiege, A., Kirchner, C., Holtz, F., Linnen, R.L., and Dziony, W. (2011) Influence of fluorine on the solubility of manganotantalite (MnTa2O6) and manganocolumbite (MnNb2O6) in granitic melts—An experimental study. Lithos, 122(3-4), 165–174.Web of ScienceGoogle Scholar

  • Gan, H., and Hess, P.C. (1992) Phosphate speciation in potassium aluminosilicate glasses. American Mineralogist, 77, 495–506.Google Scholar

  • Hess, P. (1991) The role of high field strength cations in silicate melts. In L. Perchuk and I. Kushiro, Eds., Physical Chemistry of Magmas, 9, p. 152–191. Springer, New York.Google Scholar

  • Holtz, F., Dingwell, D.B., and Behrens, H. (1993) Effects of F, B2O3 and P2O5 on the solubility of water in haplogranite melts compared to natural silicate melts. Contributions to Mineralogy and Petrology, 113(4), 492–501.Google Scholar

  • Jambon, A., and Semet, M.P. (1978) Lithium diffusion in silicate glasses of albite, orthoclase, and obsidian composition: An ion-microprobe determination. Earth and Planetary Science Letters, 37(3), 445–450.Google Scholar

  • Keppler, H. (1993) Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. Contributions to Mineralogy and Petrology, 114(4), 479–488.Google Scholar

  • Linnen, R.L. (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li + F; constraints for mineralization in rare metal granites and pegmatites. Economic Geology, 93(7), 1013–1025.Google Scholar

  • Linnen, R.L. (2005) The effect of water on accessory phase solubility in subaluminous and peralkaline granitic melts. Lithos, 80(1-4), 267–280.Google Scholar

  • Linnen, R.L., and Cuney, M. (2005) Granite-related rare-element deposits and experimental constrains on Ta-Nb-W-Sn-Zr-Hf mineralization. In R.L. Linnen and I.M. Samson, Eds., Rare-element Geochemistry and Mineral Deposit. Geological association of Canada, Short Course Notes, 17, 45–68.Google Scholar

  • Linnen, R.L., and Keppler, H. (1997) Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth’s crust. Contributions to Mineralogy and Petrology, 128(2), 213–227.Google Scholar

  • Linnen, R.L., Samson, I.M., Williams-Jones, A.E., and Chakhmouradian, A.R. (2014) Geochemistry of the Rare-Earth Element, Nb, Ta, Hf, and Zr Deposits. In H. Holland and K. Turekian, Eds., Treatise on Geochemistry (2nd ed.), p. 543–568. Elsevier, Oxford.Google Scholar

  • Liu, Y., and Nekvasil, H. (2002) Si-F bonding in aluminosilicate glasses: Inferences from ab initio NMR calculations. American Mineralogist, 87, 339–346.Google Scholar

  • London, D. (1998) Phosphorus-rich peraluminous granites. Acta Universitatis Carolinae-Geologica, 42, 64–68.Google Scholar

  • London, D. (2005) Granitic pegmatites: an assessment of current concepts and directions for the future. Lithos, 80(1-4), 281–303.Google Scholar

  • London, D. (2008) Pegmatites. Mineralogical Association of Canada, Special publication 10, Quebec.Google Scholar

  • London, D. (2009) The origin of primary textures in granitic pegmatites. Canadian Mineralogist, 47, 697–724.Web of ScienceGoogle Scholar

  • London, D. (2014) A petrologic assessment of internal zonation in granitic pegmatites. Lithos, 184-187, 74–104.Web of ScienceGoogle Scholar

  • London, D. (2015) Reply to Thomas and Davidson on “A petrologic assessment of internal zonation in granitic pegmatites” (London 2014a). Lithos, 212–215, 469–484.Web of ScienceGoogle Scholar

  • McCreath, J.A., Finch, A.A., Herd, D.A., and Armour-Brown, A. (2013) Geo-chemistry of pyrochlore minerals from the Motzfeldt Center, South Greenland: The mineralogy of a syenite-hosted Ta, Nb deposit. American Mineralogist, 98, 426–438.Google Scholar

  • Morgan, G.B. VI, and London, D. (1996) Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses. American Mineralogist, 81, 1176–1185.Google Scholar

  • Morgan, G.B. VI, and London, D. (2005) Phosphorus distribution between potassic alkali feldspar and metaluminous haplogranitic liquid at 200 MPa (H2O): The effect of undercooling on crystal–liquid systematics. Contributions to Mineralogy and Petrology, 150(4), 456–471.Google Scholar

  • Mungall, J.E., Dingwell, D.B., and Chaussidon, M. (1999) Chemical diffusivities of 18 trace elements in granitoid melts. Geochimica et Cosmochimica Acta, 63(17), 2599–2610.Google Scholar

  • Mysen, B.O., and Toplis, M.J. (2007) Structural behavior of Al3+ in peralkaline, metaluminous, and peraluminous silicate melts and glasses at ambient pressure. American Mineralogist, 92, 933–946.Web of ScienceGoogle Scholar

  • Mysen, B.O., Holtz, F., Pichavant, M., Beny, J.M., and Montel, J.M. (1997) Solution mechanisms of phosphorus in quenched hydrous and anhydrous granitic glass as a function of peraluminosity. Geochimica et Cosmochimica Acta, 61(18), 3913–3926.Google Scholar

  • Raimbault, L., Cuney, M., Azencott, C., Duthou, J.L., and Joron, J.L. (1995) Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Economic Geology, 90(3), 548–576.Google Scholar

  • Rao, C., Wang, R.C., Frédéric, H., Gu, X.P., Ottolini, L., Hu, H., Dong, C.W., Fabrice, D.B., and Maxime, B. (2014) Strontiohurlbutite, SrBe2(PO4)2, a new mineral from Nanping No. 31 pegmatite, Fujian Province, Southeastern China. American Mineralogist, 99, 494–499.Google Scholar

  • Robie, R.A., Huebner, J.S., and Hemingway, B.S. (1995) Heat capacities and thermodynamic properties of braunite (Mn7SiO12) and rhodonite (MnSiO3). American Mineralogist, 80, 560–575.Google Scholar

  • Stilling, A., Černý, P., and Vanstone, P.J. (2006) the Tanco pegmatite at Bernic Lake, Manitoba XVI. Zonal and bulk compositions and their petrogenetic significance. Candian Mineralogist, 44, 599–623.Google Scholar

  • Thomas, R., Webster, J.D., and Rhede, D. (1998) Strong phosphorus enrichment in a pegmatite-forming melt. Acta Universitatis Carolinae–Geologica, 42, 150–164.Google Scholar

  • Thompson, L.M., and Stebbins, J.F. (2011) Non-bridging oxygen and high-coordinated aluminum in metaluminous and peraluminous calcium and potassium aluminosilicate glasses: High-resolution 17O and 27Al MAS NMR results. American Mineralogist, 96, 841–853.Web of ScienceGoogle Scholar

  • Toplis, M.J., and Dingwell, D.B. (1996) The variable influence of P2O5 on the viscosity of melts of differing alkali/aluminium ratio: Implications for the structural role of phosphorus in silicate melts. Geochimica et Cosmochimica Acta, 60(21), 4107–4121.Google Scholar

  • Van Lichtervelde, M., Holtz, F., and Hanchar, J. (2010) Solubility of manganotantalite, zircon and hafnon in highly fluxed peralkaline to peraluminous pegmatitic melts. Contributions to Mineralogy and Petrology, 160(1), 17–32.Google Scholar

  • Watson, E.B. (1979) Zircon saturation in felsic liquids: Experimental results and applications to trace element geochemistry. Contributions to Mineralogy and Petrology, 70(4), 407–419.Google Scholar

  • Wolf, M., and London, D. (1993) Preliminary results of HFS and RE element solubility experiments in granites as a function of B and P. Eos, 74, 343.Google Scholar

  • Wolf, M., and London, D. (1994) Apatite dissolution into peraluminous haplogranitic melts: An experimental study of solubilities and mechanisms. Geochimica et Cosmochimica Acta, 58(19), 4127–4145.Google Scholar

  • Yin, L., Pollard, P.J., Shouxi, H., and Taylor, R.G. (1995) Geologic and geochemical characteristics of the Yichun Ta-Nb-Li deposit, Jiangxi Province, South China. Economic Geology, 90(3), 577–585.Google Scholar

About the article

Received: 2015-05-17

Accepted: 2015-09-01

Published Online: 2016-02-18

Published in Print: 2016-02-01

Manuscript handled by David London

Citation Information: American Mineralogist, Volume 101, Issue 2, Pages 415–422, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5424.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in