Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 101, Issue 2

Issues

Some thermodynamic properties of larnite (β-Ca2SiO4) constrained by high T/P experiment and/or theoretical simulation

Zhihua Xiong / Xi Liu / Sean R. Shieh / Sicheng Wang
  • The Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education of China, Beijing 100871, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Linlin Chang / Junjie Tang
  • The Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education of China, Beijing 100871, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xinguo Hong / Zhigang Zhang
  • Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hejing Wang
  • The Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education of China, Beijing 100871, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-18 | DOI: https://doi.org/10.2138/am-2016-5425

Abstract

Pure larnite (β-Ca2SiO4; Lrn) was synthesized at 6 GPa and 1473 K for 6 h by using a cubic press, its thermal expansivity was investigated up to 923 K by using an X-ray powder diffraction technique (ambient P), and its compressibility was investigated up to ∼16 GPa by using a diamond-anvil cell coupled with synchrotron X-ray radiation (ambient T). Its volumetric thermal expansion coefficient (αV) and isothermal bulk modulus (KT) were constrained as αV = 4.24(4) × 10−5 K−1 and KT = 103(2) GPa [the first pressure derivative KT obtained as 5.4(4)], respectively. Its compressibility was further studied with the CASTEP code using density functional theory and planewave pseudopotential technique. We obtained the KT values as 123(3) GPa (LDA; high boundary) and 92(2) GPa (GGA; low boundary), with the values of the KT as 4.4(9) and 4.9(5), respectively. The phonon dispersions and vibrational density of states (VDoS) of Lrn were simulated using density functional perturbation theory, and the VDoS was combined with a quasi-harmonic approximation to compute the isobaric heat capacity (CP) and standard vibrational entropy (S2980), yielding CP = 212.1(1) − 9.69(5) × 102T−0.5 − 4.1(3) × 106T−2 + 5.20(7) × 108T−3 J/(mol.K) for the T range of ∼298–1000 K and (S2980)=129.8(13) J/(mol.K). The microscopic and macroscopic thermal Grüneisen parameters of Lrn at 298 K were calculated to be 0.75(6) and 1.80(4), respectively.

Keywords: β-Ca2SiO4; compressibility; entropy; heat capacity; larnite; thermal expansivity; thermal Grüneisen parameter; thermodynamic property

Special collection information can be found at http://ammin.geoscienceworld.org/site/misc/specialissuelist.xhtml.

References cited

  • Akaogi, M., Yano, Y., Tejima, M., Iijima, M., and Kojitani, H. (2004) High-pressure transitions of diopside and wollastonite: phase equilibria and thermochemistry of CaMgSi2O6, CaSiO3, and CaSi2O5-CaTiSiO5. Earth and Planetary Science Letters, 143–144, 145–156.Google Scholar

  • Angel, R.J. (2000) Equation of state. In R.M. Hazen and R.T. Downs, Eds., high-Temperature and High-Pressure Crystal Chemistry, vol. 41, p. 35–60. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.Google Scholar

  • Barnes, P., Fentiman, C.H., and Jeffery, J.W. (1980) Structurally related dicalcium silicate phases. Acta Crystallographica A, 36, 353–356.Google Scholar

  • Baroni, S., de Gironcoli, S., Dal Corso, A., and Giannozzi, P. (2001) Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73, 515–562.Google Scholar

  • Barron, L.M. (2005) A linear model and topography for the host-inclusion mineral system involving diamond. Canadian Mineralogist, 43, 203–224.Google Scholar

  • Birch, F. (1947) Finite elastic strain of cubic crystals. Physical Review, 71, 809–924.Google Scholar

  • Bowen, N.L. (1940) Progressive metamorphism of siliceous limestone and dolomite. The Journal of Geology, 48, 225–274.Google Scholar

  • Brenker, F.E., Vincze, L., Vekemans, B., Nasdala, L., Stachel, T., Vollmer, C., Kersten, M., Somogyi, A., Adams, F., Joswig, W., and Harris, J.W. (2005) Detection of a Ca-rich lithology in the Earth’s deep (>300 km) convecting mantle. Earth and Planetary Science Letters, 236, 579–587.Google Scholar

  • Ceperley, D.M., and Alder, B.J. (1980) Ground state of the electron gas by a stochastic method. Physical Review Letters, 45, 566–569.Google Scholar

  • Chang, L., Liu, X., Kojitani, H., and Wang, S. (2013) Vibrational mode analysis and heat capacity calculation of K2SiSi3O9-wadeite. Physics and Chemistry of Minerals, 40, 563–574.Google Scholar

  • Coughlin, J.P., and O’Brien, C.J. (1957) High temperature heat contents of calcium orthosilicate. Journal of Physical Chemistry, 61, 767–769.Google Scholar

  • Deng, L., Liu, X., Liu, H., and Dong, J. (2010) High-pressure phase relations in the composition of albite NaAlSi3O8 constrained by an ab initio and quasi-harmonic Debye model, and their implications. Earth and Planetary Science Letters, 298, 427–433.Google Scholar

  • Deng, L., Liu, X., Liu, H., and Zhang, Y. (2011) A first-principles study of the phase transition from Holl-I to Holl-II in the composition KAlSi3O8. American Mineralogist, 96, 974–982.Google Scholar

  • Fujimori, H., Komatsu, H., Ioku, K., Goto, S., and Yoshimura, M. (2002) Anharmonic lattice mode of Ca2SiO4: ultraviolet laser Raman spectroscopy at high temperatures. Physical Review B, 66, 064306.Google Scholar

  • Fukuda, K., Maki, I., and Ito, S. (1997) Anisotropic thermal expansion of ß-Ca2SiO4 monoclinic crystal. Journal of the American Ceramic Society, 80, 1595–1598.Google Scholar

  • Gasparik, T., Wolf, K., and Smith, C.M. (1994) Experimental determination of phase relations in the CaSiO3 system from 8 to 15 GPa. American Mineralogist, 79, 1219–1222.Google Scholar

  • Gillet, P, Richet, P., Guyot, F., and Fiquet, G. (1991) high-temperature thermodynamic properties of forsterite. Journal of Geophysical Research, 96, 11805–11816.Google Scholar

  • Gillet, P., Sautter, V., Harris, J., Reynard, B., Harte, B., and Kunz, M. (2002) Raman spectroscopic study of garnet inclusions in diamonds from the mantle transition zone. American Mineralogist, 87, 312–317.Google Scholar

  • Green, D.H., and Ringwood, A.E. (1967) The stability fields of aluminous pyroxene peridotite and garnet peridotite and their relevance in upper mantle structures. Earth and Planetary Science Letters, 3, 151–160.Google Scholar

  • Groves, G.W. (1983) Phase transformations in dicalcium silicate. Journal of Materials Science, 18, 1615–1624.Google Scholar

  • Hammersley, J. (1996) Fit2D report. Europe Synchrotron Radiation Facility, Grenoble, France.

  • Hanic, F., Kamarad, J., Stracelsky, J., and Kapralik (1987) The P-T diagram of Ca2SiO4 British Ceramic Transactions and Journal, 86, 194–198.Google Scholar

  • Hazen, R.M., and Finger, L.W (1979) Bulk modulus-volume relationship for cationanion polyhedra. Journal of Geophysical Research, 84, 6723–6728.Google Scholar

  • He, D., Shieh, S.R., and Duffy, T.S. (2004) Strength and equation of state of boron suboxide from radial X-ray diffraction in a diamond cell under nonhydrostatic compression. Physical Review B, 70, 184–121.Google Scholar

  • He, Q., Liu, X., Hu, X., Li, S., and Wang, H. (2011) Solid solution between lead fluorapatite and lead fluorvanadate apatite: mixing behavior, Raman feature and thermal expansivity. Physics and Chemistry of Minerals, 38, 741–752.Google Scholar

  • He, Q., Liu, X., Hu, X., Deng, L., Chen, Z., Li, B., and Fei, Y (2012) Solid solutions between lead fluorapatite and lead fluorvanadate apatite: compressibility determined by using a diamond-anvil cell coupled with synchrotron X-ray diffraction. Physics and Chemistry of Minerals, 39, 219–226.Google Scholar

  • Heinz, D.L., and Jeanloz, R. (1984) The equation of state of the gold calibration standard. Journal of Applied Physics, 55, 885–893.Google Scholar

  • Hofmeister, A.M., and Mao, H.K. (2002) Redefinition of the mode Grüneisen parameter for polyatomic substances and thermodynamic implications. Proceedings of the National Academy of the Sciences, 99, 559–564.Google Scholar

  • Hohenberg, P., and Kohn, W. (1964) Inhomogeneous electron gas. Physical Review, 136, 864—871.Google Scholar

  • Holland, T.J.B., and Powell, R. (1998) An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, 309–343.Google Scholar

  • Hu, X., Liu, X., He, Q., Wang, H., Qin, S., Ren, L., Wu, C., and Chang, L. (2011) Thermal expansion of andalusite and sillimanite at ambient pressure: a powder X-ray diffraction study up to 1000 °C. Mineralogical Magazine, 75, 363–374.Google Scholar

  • Irifune, T. (1994) Absence of an aluminous phase in the upper part of the Earth’s lower mantle. Nature, 370, 131–133.Google Scholar

  • Irifune, T., Susaki, J., Yagi, T., and Sawamoto, H. (1989) Phase transformations in diopside CaMgSi2O6 at pressures up to 25 GPa. Geophysical Research Letters, 16, 187–190.Google Scholar

  • Irifune, T., Ringwood, A.E., and Hibberson, W.O. (1994) Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth and Planetary Science Letters, 117, 101–110.Google Scholar

  • Jackson, I. (1998) Elasticity, composition and temperature of the Earth’s lower mantle: a reappraisal. Geophysical Journal International, 134, 291–311.Google Scholar

  • Joachim, B., Gardés, E., Abart, R., and Heinrich, W. (2011) Experimental growth of åkermanite reaction rims between wollastonite and monticellite: evidence for volume diffusion control. Contributions to Mineralogy and Petrology, 161, 389–399.Google Scholar

  • Joachim, B., Gardés, E., Velickov, B., Abart, R., and Heinrich, W (2012) Experimental growth of diopside + merwinite reaction rims: the effect of water on microstructure development. American Mineralogist, 97, 220–230.Google Scholar

  • Jost, K.H., Ziemer, B., and Seydel, R. (1977) Redetermination of the structure of β-dicalcium silicate. Acta Crystallographica, B33, 1696–1700.Google Scholar

  • Joswig, W., Stachel, T.H., Harris, J.W., Baur, W.H., and Brey, G.P (1999) New Ca- silicate inclusions in diamonds-tracer from the lower mantle. Earth and Planetary Science Letters, 173, 1–6.Google Scholar

  • Joswig, W., Paulus, E.F., Winkler, B., and Milman, V. (2003) The crystal structure of CaSiO3-walstromite, a special isomorph of wollastonite-II. Zeitschrift für Kristallographie, 218, 811–818.Google Scholar

  • Kagi, H., Odake, S., Fukura, S., and Zedgenizov, D.A. (2009) Raman spectroscopic estimation of depth of diamond origin: technical developments and the application. Russian Geology and Geophysics, 50, 1183–1187.Google Scholar

  • Kanzaki, M., Stebbins, J.F., and Xue, X. (1991) Characterization of quenched high pressure phases in CaSiO3 system by XRD and 29Si NMR. Geophysical Research Letters, 18, 463–466.Google Scholar

  • Kim, Y.J., Nettleship, I., and Kriven, W.M. (1992) Phase transformations in dicalcium silicate: II, TEM studies of crystallography, microstructure and mechanisms. Journal of the American Ceramic Society, 75, 2407–2419.Google Scholar

  • Klement, W Jr., and Cohen, L.H. (1974) Determination of the β → α’ transition in Ca2SiO4 to 7 kbar. Cement and Concrete Research, 4, 939–943.Google Scholar

  • Klotz, S., Chervin, J.C., Munsch, P., and Le Marchand, G. (2009) Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42, 075413.Google Scholar

  • Kohn, W, and Sham, L.J. (1965) Self-consistent equations including exchange and correlation effects. Physical Review, 140, 1133–1138.Google Scholar

  • Lai, G.C., Nojiri, T, and Nakano, K.I. (1992) Studies of the stability of ß-Ca2SiO4 doped by minor ions. Cement and Concrete Research, 22, 743–754.Google Scholar

  • Lee, M.H. (1995) Advanced pseudopotentials for large scale electronic structure calculations. PhD thesis, University of Cambridge, U.K.Google Scholar

  • Lin, J.S., Qteish, A., Payne, M.C., and Heine, V. (1993) Optimized and transferable nonlocal separable ab initio pseudopotentials. Physical Review B, 47, 4174—4180.Google Scholar

  • Liu, L. (1978) High pressure Ca2SiO4, the silicate K2NiF4-isotype with crystalchemical and geophysical implications. Physics and Chemistry of Minerals, 3, 291–299.Google Scholar

  • Liu, L., and Ringwood, A.E. (1975) Synthesis of a perovskite-type polymorph of CaSiO3. Earth and Planetary Science Letters, 28, 209–211.Google Scholar

  • Liu, J., Duan, C.G., Mei, W.N., Smith, R.W., and Hardy, J.R. (2002) Polymorphous transformations in alkaline-earth silicates. Journal of Chemical Physics, 116, 3864–3869.Google Scholar

  • Liu, X., He, Q., Wang, H., Fleet, M.E., and Hu, X. (2010) Thermal expansion of kyanite at ambient pressure: an X-ray powder diffraction study up to 1000°C. Geoscience Frontiers, 1, 91-97.Google Scholar

  • Liu, X., Shieh, S.R., Fleet, M.E., Zhang, L., and He, Q. (2011) Equation of state of carbonated hydroxylapatite at ambient temperature up to 10 GPa: significance of carbonate. American Mineralogist, 96, 74—80.Google Scholar

  • Liu, X., Ohfuji, H., Nishiyama, N., He, Q., Sanehira, T, and Irifune, T. (2012a) High-P behavior of anorthite composition and some phase relations of the CaO-Al2O3-SiO2 system to the lower mantle of the Earth, and their geophysical implications. Journal of Geophysical Research, 117, B09205.Google Scholar

  • Liu, X., Chen, J., Tang, J., He, Q., Li, S., Peng, F., He, D., Zhang, L., and Fei, Y (2012b) A large volume cubic press with a pressure-generating capability up to about 10 GPa. High Pressure Research, 40, 239–254.Google Scholar

  • Liu, X., Wang, S., He, Q., Chen, J., Wang, H., Li, S., Peng, F., Zhang, L., and Fei, Y (2012c) Thermal elastic behavior of CaSiO3-walstromite: a powder X-ray diffraction study up to 900 °C. American Mineralogist, 97, 262–267.Google Scholar

  • Mao, H.K., Yagi, T., and Bell, PM. (1977) Mineralogy of the Earth’s deep mantle: quenching experiments on mineral compositions at high pressure and temperature. Carnegie Institution of Washington Yearbook, 76, 502–504.Google Scholar

  • Mao, H.K., Bell, P.M., Shaner, J.W., and Steinberg, D.J. (1978) Specific volume measurements of Cu, Mo, Pt, and Au and calibration of ruby R1 fluorescence pressure gauge for 0.006 to 1 Mbar. Journal of Applied Physics, 49, 3276–3283.Google Scholar

  • Mason, B. (1957) Larnite, scawtite, and hydrogrossular from Tokatoka, New Zealand. American Mineralogist, 42, 379–392.Google Scholar

  • Monkhorst, H.J., and Pack, J.D. (1976) Special points for Brillouin-zone integrations. Physical Review B, 13, 5188–5192.Google Scholar

  • Nasdala, L., Brenker, F.E., Glinnemann, J., Hofmeister, W., Gasparik, T., Harris, J.W., Stachel, T., and Reese, I. (2003) Spectroscopic 2D-tomography: residual pressure and strain around mineral inclusions in diamonds. European Journal of Mineralogy, 15, 931–935.Google Scholar

  • Payne, M.C., Teter, M.P, Allan, D.C., Arias, T.A., and Joannopoulos, J.D. (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Review of Modern Physics, 64, 1045–1097.Google Scholar

  • Perdew, J.P, and Zunger, A. (1981) Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 23, 5048–5079.Google Scholar

  • Perdew, J.P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation made simple. Physical Review Letters, 77, 3865–3868.Google Scholar

  • Piriou, B., and McMillan, P (1983) The high-frequency vibrational spectra of vitreous and crystalline orthosilicates. American Mineralogist, 68, 426–443.Google Scholar

  • Refson, K., Tulip, PR., and Clark, S.J. (2006) Variational density-functional perturbation theory for dielectrics and lattice dynamics. Physical Review B, 73, 155114.CrossrefGoogle Scholar

  • Remy, C., Guyot, F., and Madon, M. (1995) High pressure polymorphism of dicalcium Ca2SiO4. A transmission electron microprobe study. Physics and Chemistry of Minerals, 22, 419–427.Google Scholar

  • Remy, C., Reynard, B., and Madon, M. (1997a) Raman spectroscopic investigations of dicalcium silicate: polymorphs and high-temperature phase transformations. Journal of the American Ceramic Society, 80, 413–423.Google Scholar

  • Remy, C., Andrault, D., and Madon, M. (1997b) high-Temperature, high-pressure X-ray investigation of dicalcium silicate. Journal of the American Ceramic Society, 80, 851–860.Google Scholar

  • Reynard, B., Remy, C., and Takir, F. (1997) High-pressure Raman spectroscopic study of Mn2GeO4, Ca2GeO4, Ca2SiO4, and CaMgGeO4 olivines. Physics and Chemistry of Minerals, 24, 77–84.Google Scholar

  • Ringwood, A.E. (1975) Composition and Petrology of the Earth’s Mantle. McGraw- Hill, New York.Google Scholar

  • Rodrigues, F.A. (2003) Synthesis of chemically and structurally modified dicalcium silicate. Cement and Concrete Research, 33, 823–827.Google Scholar

  • Saalfeld, H. (1975) X-ray investigation of single crystals of ß-Ca2SiO4 (larnite) at high temperatures. American Mineralogist, 60, 824–827.Google Scholar

  • Sueda, Y., Irifune, T., Yamada, A., Inoue, T., Liu, X., and Funakoshi, K. (2006) The phase boundary between CaSiO3 perovskite and Ca2SiO4 + CaSi2O5 determined by in situ X-ray observations. Geophysical Research Letters, 33, L10307.Google Scholar

  • Swamy, V, and Dubrovinsky, L.S. (1997) Thermodynamic data for the phases in the CaSiO3 system. Geochimica et Cosmochimica Acta, 61, 1181 —1191.Google Scholar

  • Takahashi, E. (1986) Melting ofa dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle. Journal of Geophysical Research, 91, 9367–9382.Google Scholar

  • Tang, J., Liu, X., Xiong, Z., He, Q., Shieh, R.S. and Wang, H. (2014) High temperature X-ray diffraction, DSC-TGA, polarized FTIR and high pressure Raman spectroscopy studies on euclase. Bulletin of Mineralogy, Petrology and Geochemistry, 33, 289–298.Google Scholar

  • Thompson, A.B. (1992) Water in the Earth’s upper mantle. Nature, 358, 295-302.Google Scholar

  • Tilley, C.E. (1929) On larnite (calcium orthosilicate, a new mineral) and its associated minerals from the limestone contact-zone of Scawt Hill, Co. Antrim. Mineralogical Magazine, 22, 77–86.Google Scholar

  • Tilley, C.E. (1947) The gabbro-limestone contact of Camas Mor, Muck, Inverness-shire. Bulletin de la Commission Geologique de Finlande, 140, 97–106.Google Scholar

  • Tilley, C.E. (1951) A note on the progressive metamorphism of siliceous limestones and dolomites. Geological Magazine, 88, 175—178.Google Scholar

  • Todd, S.S. (1951) Low-temperature heat capacities and entropies at 298.16 °K of crystalline calcium orthosilicate, zinc orthosilicate and tricalcium silicate. Journal of the American Chemical Society, 73, 3277–3278.Google Scholar

  • Tsurumi, T., Hirano, Y, Kato, H., Kamiya, T., and Daimon, M. (1994) Crystal structure and hydration of belite. Ceramic Transactions, 40, 19–25.Google Scholar

  • Wang, Y, and Weidner, D.J. (1994) Thermoelasticity of CaSiO3 perovskite and implications for the lower mantle. Geophysical Research Letters, 21, 895–898.Google Scholar

  • Wang, S., Liu, X., Fei, Y, He, Q., and Wang, H. (2012) In situ high-Temperature powder X-ray diffraction study on the spinel solid solutions (Mg1-xMnx)Cr2O4. Physics and Chemistry of Minerals, 39, 189–198.Google Scholar

  • Xiong, Z., Liu, X., Shieh, S.R., Wang, F., Wu, X., Hong, X., and Shi, Y (2015) Equation of state of a synthetic ulvöspinel, (Fe1.94Ti0.03)Ti1.00O400, at ambient temperature. Physics and Chemistry of Minerals, 42, 171–177.Google Scholar

  • Yamnova, N.A., Zubkova, N.V, Eremin, N.N., Zadov, A.E., and Gazeev, V.M. (2011) Crystal structure of larnite ß-Ca2SiO4 and specific features ofpolymorphic transitions in dicalcium orthosilicate. Crystallography Reports, 56, 210–220.Google Scholar

  • Yannaquis, N., and Guinier, A. (1959) La transition polymorphique β-γ de l’orthosilicate de calcium. Bulletin de la Societe Francaise de Mineralogie et de Cristallographie, 82, 126–136.Google Scholar

  • Ye, K., Liou, J.B., Cong, B., and Maruyama, S. (2001) Overpressures induced by coesite- quartz transition in zircon. American Mineralogist, 86, 1151–1155.Google Scholar

  • Zedgenizov, D.A., Shatskiy, A., Ragozin, A.L., Kagi, H., and Shatsky, V.S. (2014) Merwinite in diamond from Sao Luiz, Brazil: a new mineral of the Ca-rich mantle environment. American Mineralogist, 99, 547–550.Google Scholar

About the article

Received: 2015-05-17

Accepted: 2015-09-01

Published Online: 2016-02-18

Published in Print: 2016-02-01


Manuscript handled by Katherine Crispin


Citation Information: American Mineralogist, Volume 101, Issue 2, Pages 277–288, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5425.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in