Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

See all formats and pricing
More options …
Volume 101, Issue 2


Mechanical properties of natural radiation-damaged titanite and temperature-induced structural reorganization: A nanoindentation and Raman spectroscopic study

Tobias Beirau
  • Corresponding author
  • Department of Geological Sciences, Stanford University, Stanford, California 94305-2115, U.S.A.
  • Department of Earth Sciences, University of Hamburg, 20146 Hamburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ William D. Nix / Rodney C. Ewing
  • Department of Geological Sciences, Stanford University, Stanford, California 94305-2115, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gerold A. Schneider
  • Department of Geological Sciences, Stanford University, Stanford, California 94305-2115, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lee A. Groat / Ulrich Bismayer
Published Online: 2016-02-18 | DOI: https://doi.org/10.2138/am-2016-5433


This study provides new insights into the relation between thermally induced structural reorganization and the macroscopic mechanical properties of radiation-damaged titanite. The natural sample contains ca. 30% amorphous fraction. Low-temperature annealing affects only slightly the sample stiffness and leads to a softening resulting from the defect annihilation in crystalline regions. In the high-temperature annealing regime, amorphous domains recrystallize and this leads to further recovery of defects, reduction of interfaces, grain growth, and, in general, an increase in the long-range order. The thermally induced recrystallization is accompanied by massive dehydration leading to considerable stiffening and hardening. This interpretation of the recrystallization process in titanite based on the correlation of new results from nanoindentation and Raman-spectroscopic measurements complementing previous investigations using thermogravimetric and gas analyses by Hawthorne et al. (1991) and infrared spectroscopy by Zhang et al. (2001). The new data combined with previous work leads to a detailed description of the annealing behavior of a radiation-damaged titanite, which is a complicated process that includes dehydration and atomic-scale structural reorganization. To minimize the influence of surface phenomena on the hardness measurements, the so-called “true” hardness was used instead of the standard hardness calculation (Oliver and Pharr 1992). A comparison shows that the Oliver and Pharr method clearly underestimates the hardness.

Keywords: Titanite; radiation damage; α-decay; metamict; partially amorphous; dehydration; nanoindentation; Raman spectroscopy; true hardness; elastic modulus; recrystallization

References cited

  • Beirau, T., Bismayer, U., Mihailova, B., Paulmann, C., and Groat, L. (2010) Structural phenomena of metamict titanite: a synchrotron, X-ray diffraction and vibrational spectroscopic study. Phase Transitions, 83, 694–702.Google Scholar

  • Beirau, T., Mihailova, B., Matveeva, G., Kolb, U., Malcherek, T., Groat, L.A., and Bis-mayer, U. (2012) Structural anisotropy and annealing-induced nanoscale atomic rearrangements in metamict titanite. American Mineralogist, 97, 1354–1365.Google Scholar

  • Beirau, T., Guglielmi, P., Paulmann, C., Schneider, G.A., Groat, L.A., Malcherek, T., Salje, E.K.H., and Bismayer, U. (2013) Interfaces in metamict titanite: the macroscopic mechanical properties after stepwise annealing. Phase Transitions, 86, 23–32.Google Scholar

  • Beirau, T., Mihailova, B., Malcherek, T., Paulmann, C., Groat, L.A., and Bismayer, U. (2014) Temperature-induced P21/c to C2/c phase transition in partially amorphous (metamict) titanite revealed by Raman spectroscopy. Canadian Mineralogist, 52, 91–100.Google Scholar

  • Bismayer, U., Schmahl, W., Schmidt, C., and Groat, L.A. (1992) Linear birefringence and X-ray diffraction studies of the structural phase transition in titanite, CaTiSiO5. Physics and Chemistry of Minerals, 19, 260–266.Google Scholar

  • Bismayer, U., Paulmann, C., Groat, L.A., and Zhang, M. (2010) Local phenomena in metamict titanite. Acta Physica Polonica A, 117, 74–77.Google Scholar

  • Chakoumakos, B.C., Oliver, W.C., Lumpkin, G.R., and Ewing, R.C. (1991) Hardness and elastic modulus of zircon as a function of heavy-particle irradiation dose: I. In situ -decay event damage. Radiation Effects and Defects in Solids, 118, 393–403.Google Scholar

  • Chrosch, J., Colombo, M., Malcherek, T., Salje, E.K.H., Groat, L.A., and Bismayer, U. (1998) Thermal annealing of radiation damaged titanite. American Mineralo-gist, 83, 1083–1091.Google Scholar

  • Dienes, G.J. (1952) A theoretical estimate of the effect of radiation on the elastic constants of simple metals. Physical Review, 86, 228–234.Google Scholar

  • Dienes, G.J. (1953) Effects of nuclear radiation on the mechanical properties of solids. Journal of Applied Physics, 24, 666–674.Google Scholar

  • Dixton, R.S. (1986) The Canadian Nuclear Fuel Waste Management Program a summary of the Program and Progress to 1984 December. Scientific Document Distribution Office Atomic Energy of Canada Limited, Chalk River, Ontario, Canada.Google Scholar

  • Ewing, R.C. (1973) Vickers hardness and reflectance determinations for metamict AB2O6-type rare earth Ti-Nb-Ta oxides. American Mineralogist, 58, 942–944.Google Scholar

  • Ewing, R.C. (2007) Displaced by radiation. Nature, 445, 161–162.Google Scholar

  • Ewing, R.C. (2011) Actinides and radiation effects: impact on the back-end of the nuclear fuel cycle. Mineralogical Magazine, 75, 2359–2377.Google Scholar

  • Ewing, R.C., Weber, W.J., and Clinard, F.W. Jr. (1995) Radiation effects in nuclear waste forms for high-level radioactive waste. Progress in Nuclear Energy, 29, 63–127.Google Scholar

  • Farges, F. (1997) Fivefold-coordinated Ti4+ in metamict zirconolite and titanite: A new occurrence shown by Ti K-edge XANES spectroscopy. American Miner-alogist, 82, 44–50.Google Scholar

  • Gaft, M., Nagli, L., Reisfeld, R., and Panczer, G. (2003) Laser-induced time-resolved luminescence of natural titanite CaTiOSiO4. Optical Materials, 24, 231–241.Google Scholar

  • Greaves, G.N., Greer, A.L., Lakes, R.S., and Rouxel, T. (2011) Poisson’s ratio and modern materials. Nature Materials, 10, 823–837.Google Scholar

  • Groat, L.A., Carter, R.T., Hawthorne, F.C., and Ercit, T.S. (1985) Tantalian niobian titanite from the Irgon Claim, Southeastern Manitoba. Canadian Mineralogist, 23, 569–571.Google Scholar

  • Hall, E.O. (1951) The deformation and ageing of mild steel: III Discussion of results. Proceedings of the Physical Society of London Section B, 64, 747–753.Google Scholar

  • Hawthorne, F.C., Groat, L.A., Raudsepp, M., Ball, N.A., Kimata, M., Spike, F., Gaba, R., Halden, N.M., Lumpkin, G.R., Ewing, R.C., and others. (1991) Alpha-decay damage in titanite. American Mineralogist, 76, 370–396.Google Scholar

  • Hayward, P.J. (1988) Glass-ceramics. In W. Lutze and R.C. Ewing, Eds., Radioactive Waste Forms for the Future, p. 427–494. North-Holland Physics Publishing, Netherlands.Google Scholar

  • Hollabaugh, C.L., and Foit, F.F. Jr. (1984) The crystal structure of an Al-rich titanite from Grisons, Switzerland. American Mineralogist, 69, 725–732.Google Scholar

  • Hollabaugh, C.L., and Rosenberg, P.E. (1983) Substitution of Ti for Si in titanite and new end-member cell dimensions for titanite. American Mineralogist, 68, 177–180.Google Scholar

  • Joslin, D.L., and Oliver, W.C. (1990) A new method for analyzing data from continuous depth-sensing microindentation tests. Journal of Materials Research, 5, 123–126.Google Scholar

  • Kek, S., Aroyo, M., Bismayer, U., Schmidt, C., Eichhorn, K., and Krane, H.G. (1997) The two-step phase transition of titanite, CaTiSiO5: a synchrotron radiation study. Zeitschrift für Kristallographie, 212, 9–19.Google Scholar

  • Ledbetter, H.M., and Reed, R.P. (1973) Elastic properties of metals and alloys, 1. Iron, nickel, and iron-nickel alloys. Journal of Physical and Chemical Reference Data, 2, 531–617.Google Scholar

  • Li, X., and Bhushan, B. (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Materials Characterization, 48, 11–36.Google Scholar

  • Lizhi, O., and Zhu, D.M. (2004) Simulation of the effect of interstitials to shear modulus in aluminum and ionic crystal. In M. Tokuyama and I. Oppenheim, Eds., Proceedings of the 3rd International Symposium on Slow Dynamics in Complex Systems, p. 715–716. AIP Conference Proceedings, Sendai.Google Scholar

  • Lumpkin, G.R., Eby, R.K., and Ewing, R.C. (1991) Alpha-recoil damage in titanite (CaTiSiO5): Direct observation and annealing study using high resolution transmission electron microscopy. Journal of Materials Research, 6, 560–564.Google Scholar

  • Meyer, H.W., Zhang, M., Bismayer, U., Salje, E.K.H., Schmidt, C., Kek, S., Morgenroth, W., and Bleser, T. (1996) Phase transformation of natural titanite: An infrared, Raman spectroscopic, optical birefringence and X-ray diffraction study. Phase Transitions, 59, 39–60.Google Scholar

  • Muir, I.J., Metson, J.B., and Bancroft, G.M. (1984) 57Fe Mössbauer spectra of perovskite and titanite. Canadian Mineralogist, 22, 689–694.Google Scholar

  • Oliver, W.C., and Pharr, G.M. (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7, 1564–1583Google Scholar

  • Oliver, W.C., and Pharr, G.M. (2004) Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 19, 3–20.Google Scholar

  • Oliver, W.C., McCallum, J.C., Chakoumakos, B.C., and Boatner, L.A. (1994) Hardness and elastic modulus of zircon as a function of heavy-particle irradiation dose: II. Pb-ion implantation damage. Radiation Effects and Defects in Solids, 132, 131–141.Google Scholar

  • Paul, B.J., Cerny, P., and Chapman, R. (1981) Niobian titanite from the huron claim pegmatite, southeastern Manitoba. Canadian Mineralogist, 19, 549–552.Google Scholar

  • Paulmann, C., Bismayer, U., and Groat, L.A. (2000) Thermal annealing of metamicttitanite: A synchrotron radiation and optical birefringence study. Zeitschrift für Kristallographie, 215, 678–682.Google Scholar

  • Petch, N.J. (1953) The cleavage strength of polycrystals. Journal of the Iron and Steel Institute, 174, 25–28.Google Scholar

  • Pharr, G.M. (1998) Measurement of mechanical properties by ultra-low load indentation. Materials Science and Engineering: A, 253, 151–159.Google Scholar

  • Saha, R., and Nix, W.D. (2002) Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Materialia, 50, 23–38.Google Scholar

  • Salje, E.K.H., Schmidt, C., and Bismayer, U. (1993) Structural phase transition in titanite, CaTiSiO5: A Raman spectroscopic study. Physics and Chemistry of Minerals, 19, 502–506.Google Scholar

  • Salje, E.K.H., Zhang, M., and Groat, L.A. (2000) Dehydration and recrystallization of radiation-damaged titanite under thermal annealing. Phase Transitions, 71, 173–187.Google Scholar

  • Salje, E.K.H., Safarik, D.J., Taylor, R.D., Pasternak, M.P., Modic, K.A., Groat, L.A., and Lashley, J.C. (2011a) Determination of iron sites and the amount of amorphization in radiation-damaged titanite (CaSiTiO5). Journal of Physics: Condensed Matter, 23, 105402 (3 p).Google Scholar

  • Salje, E.K.H., Safarik, D.J., Lashley, J.C., Groat, L.A., and Bismayer, U. (2011b) Elastic softening of metamict titanite CaTiSiO5: Radiation damage and annealing. American Mineralogist, 96, 1254–1261.Google Scholar

  • Salje, E.K.H., Taylor, R.D., Safarik, D.J., Lashley, J.C., Groat, L.A., Bismayer, U., Evans, R.J., and Friedman, R. (2012) Evidence for direct impact damage in metamict titanite CaTiSiO5. Journal of Physics: Condensed Matter, 24, 052202 (5 p).Google Scholar

  • Sneddon, I.N. (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science, 3, 47–57.Google Scholar

  • Speer, J.A., and Gibbs, G.V. (1976) The crystal structure of synthetic titanite, CaTiOSiO4, and the domain texture of natural titanites. American Mineralogist, 61, 238–247.Google Scholar

  • Stefanovsky, S.V., Yudintsev, S.V., Nikonov, B.S., Omelianenko, B.I., and Lapina, M.I. (2000) Isomorphic capacity of synthetic sphene with respect to Gd and U. In R.W. Smith and D.W. Shoesmith, Eds., Materials Research Society Symposium Proceedings, 608, 455–460.Google Scholar

  • Taylor, M., and Brown, G.E. (1976) High-temperature structural study of the P21/aA2/a phase transition in synthetic titanite, CaTiSiO5. American Mineralogist, 61, 435–447.Google Scholar

  • Trachenko, K.O., Dove, M.T., and Salje, E.K.H. (2001) Atomistic modelling of radiation damage in zircon. Journal of Physics: Condensed Matter, 13, 1947–1959.Google Scholar

  • Van Heurck, C., Van Tendeloo, G., Ghose, S., and Amelinckx, S. (1991) Paraelectricantiferroelectric phase transition in titanite, CaTiSiO5 II. Electron diffraction and electron microscopic studies of the transition dynamics. Physics and Chemistry of Minerals, 17, 604–610.Google Scholar

  • Vance, E.R., and Metson, J.B. (1985) Radiation damage in natural titanites. Physics and Chemistry of Minerals, 12, 255–260.Google Scholar

  • Vance, E.R., Carter, M.L., Begg, B.D., Day, R.A., and Leung, S.H.F. (2000) Solid solubilities of Pu, U, Hf, and Gd in candidate ceramic phases for actinide waste immobilization. In R.W. Smith and D.W. Shoesmith, Eds., Materials Research Society Symposium Proceedings, 608, 431–436.Google Scholar

  • Weber, W.J. (2000) Models and mechanisms of irradiation-induced amorphization in ceramics. Nuclear Instruments and Methods in Physics Research B, 166-167, 98–106.Google Scholar

  • Weber, W.J., Wald, J.W., and Matzke, Hj. (1986) Effects of self-radiation damage in Cm-doped Gd2Ti2O7 and CaZrTi2O7. Journal of Nuclear Materials, 138, 196–209.Google Scholar

  • Weber, W.J., Ewing, R.C., Catlow, C.R.A., Diaz de la Rubia, T., Hobbs, L.W., Kinoshita, C., Matzke, Hj., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R., and Zinkle, S.J. (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. Journal of Materials Research, 13, 1434–1484.Google Scholar

  • Zhang, M., and Salje, E.K.H. (2003) Spectroscopic characterization of metamictization and recrystallization in zircon and titanite. Phase Transitions, 76, 117–136.Google Scholar

  • Zhang, M., Salje, E.K.H., Bismayer, U., Unruh, H.-G., Wruck, B., and Schmidt, C. (1995) Phase transition(s) in titanite CaTiSiO5: An infrared spectroscopic, dielectric response and heat capacity study. Physics and Chemistry of Minerals, 22, 41–49.Google Scholar

  • Zhang, M., Salje, E.K.H., Malcherek, T., Bismayer, U., and Groat, L.A. (2000) Dehydration of metamict titanite: An infrared spectroscopic study. Canadian Mineralogist, 38, 119–130.Google Scholar

  • Zhang, M., Groat, L.A., Salje, E.K.H., and Beran, A. (2001) Hydrous species in crystalline and metamict titanites. American Mineralogist, 86, 904–909.Google Scholar

  • Zhang, M., Salje, E.K.H., Bismayer, U., Groat, L.A., and Malcherek, T. (2002) Metamictization and recrystallization of titanite: An infrared spectroscopic study. American Mineralogist, 87, 882–890.Google Scholar

  • Zhang, M., Salje, E.K.H., Redfern, S.A.T., Bismayer, U., and Groat, L.A. (2013) Intermediate structures in radiation damaged titanite (CaTiSiO5): a Raman spectroscopic study. Journal of Physics: Condensed Matter, 25, 115402 (12 p.).Google Scholar

About the article

Received: 2015-05-20

Accepted: 2015-08-12

Published Online: 2016-02-18

Published in Print: 2016-02-01

Manuscript handled by Daniel Hummer.

Citation Information: American Mineralogist, Volume 101, Issue 2, Pages 371–384, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5433.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in