Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

See all formats and pricing
More options …
Volume 101, Issue 2


The deep continental crust has a larger Mg isotopic variation than previously thought

Zhao-Feng Zhang
  • Corresponding author
  • State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, the Chinese Academy of Sciences, Guangzhou 510640, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-18 | DOI: https://doi.org/10.2138/am-2016-5483


Magnesium isotope compositions of the bulk continental crust is a key to understand Mg isotope behaviors during crustal processes, and is the prerequisite to study mantle-crust material exchange/reaction by Mg isotopes. However, thus far, little is known about Mg isotopic compositions of the middle and lower continental crust. In the article by Yang et al. in this issue entitled “Magnesium isotopic composition of the deep continental crust,” the authors present high-precision Mg isotopic analyses of high-grade metamorphic terrane samples and granulite xenoliths from China, which represent the middle and lower continental crust, respectively. Large Mg isotopic variation is observed in the deep continental crust, reflecting the combination of several processes, such as continental weathering, involvement of supracrustal materials, and fluid metasomatism. In addition, this article also provides an average Mg isotope composition of the bulk continental crust, which is crucial to future applications of Mg isotopes.

Keywords: Magnesium isotope; deep continental crust; high-grade metamorphic terrane; granulite xenolith

References cited

  • Bourdon, B., Tipper, E.T., Fitoussi, C., and Stracke, A. (2010) Chondritic Mg isotope composition of the Earth. Geochimica et Cosmochimica Acta, 74, 5069–5083.Web of ScienceGoogle Scholar

  • Dauphas, N., Teng, F.-Z., and Arndt, N.T. (2010) Magnesium and iron isotopes in 2.7 Ga Alexo komatiites: Mantle signatures, no evidence for Soret diffusion, and identification of diffusive transport in zoned olivine. Geochimica et Cosmochimica Acta, 74, 3274–3291.Google Scholar

  • Foster, G., von Strandmann, P, and Rae, J. (2010) Boron and magnesium isotopic composition of seawater. Geochemistry, Geophysics, Geosystems, 11(8), Q08015.Google Scholar

  • Handler, M.R., Baker, J.A., Schiller, M., Bennett, V.C., and Yaxley, G.M. (2009) Magnesium stable isotope composition of Earth’s upper mantle. Earth and Planetary Science Letters, 282, 306–313.Google Scholar

  • Huang, K.-J., Teng, F.-Z., Wei, G.-J., Ma, J.-L., and Bao, Z.-Y. (2012) Adsorption- and desorption-controlled magnesium isotope fractionation during extreme weathering of basalt in Hainan Island, China. Earth and Planetary Science Letters, 359-360, 73–83.Web of ScienceGoogle Scholar

  • Huang, K.-J., Teng, F.-Z., Elsenouy, A., Li, W.-Y, and Bao, Z.-Y. (2013) Magnesium isotopic variations in loess: Origins and implications. Earth and Planetary Science Letters, 374, 60–70.Web of ScienceGoogle Scholar

  • Li, W. Y., Teng, F.Z., Ke, S., Rudnick, R.L., Gao, S., Wu, F.Y., and Chappell, B.W. (2010) Heterogeneous magnesium isotopic composition of the upper continental crust. Geochimica et Cosmochimica Acta, 74, 6867–6884.Google Scholar

  • Ling, M.-X., Sedaghatpour, F., Teng, F.-Z., Hays, PD., Strauss, J., and Sun, W. (2011) Homogeneous magnesium isotopic composition of seawater: an excellent geostandard for Mg isotope analysis. Rapid Communications in Mass Spectrometry, 25, 2828–2836.Google Scholar

  • Liu, S.-A., Teng, F.-Z., He, Y., Ke, S., and Li, S. (2010) Investigation of magnesium isotope fractionation during granite differentiation: Implication for Mg isotopic composition of the continental crust. Earth and Planetary Science Letters, 297, 646–654.Web of ScienceGoogle Scholar

  • Liu, X.-M., Teng, F.-Z., Rudnick, R.L., McDonough, W.F., and Cummings, M.L. (2014) Massive magnesium depletion and isotope fractionation in weathered basalts. Geochimica et Cosmochimica Acta, 135, 336–349.Google Scholar

  • Pogge von Strandmann, PA.E., James, R.H., van Calsteren, P, Gislason, S.R., and Burton, K.W. (2008) Lithium, magnesium and uranium isotope behaviour in the estuarine environment of basaltic islands. Earth and Planetary Science Letters, 274, 462–471.Google Scholar

  • Pogge von Strandmann, PA.E., Elliott, T., Marschall, H.R., Coath, C., Lai, Y.-J., Jeffcoate, A.B., and Ionov, D.A. (2011) Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochimica et Cosmochimica Acta, 75, 5247–5268.Google Scholar

  • Shen, B., Jacobsen, B., Lee, C.T.A., Yin, Q.Z., and Morton, D.M. (2009) The Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation. Proceedings of the National Academy of Sciences, 106, 20,652-20,657.Web of ScienceGoogle Scholar

  • Teng, F.Z., Wadhwa, M., and Helz, R.T. (2007) Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle. Earth and Planetary Science Letters, 261, 84–92.Web of ScienceGoogle Scholar

  • Teng, F.-Z., Li, W.-Y., Ke, S., Marty, B., Dauphas, N., Huang, S., Wu, F.-Y., and Pourmand, A. (2010a) Magnesium isotopic composition of the Earth and chondrites. Geochimica et Cosmochimica Acta, 74, 4150—4166.Web of ScienceGoogle Scholar

  • Teng, F.Z., Li, W. Y., Rudnick, R.L., and Gardner, L.R. (2010b) Contrasting lithium and magnesium isotope fractionation during continental weathering. Earth and Planetary Science Letters, 300, 63–71.Google Scholar

  • Teng, F. Z., Yang, W., Rudnick, R.L., and Hu, Y. (2013) Heterogeneous magnesium isotopic composition of the lower continental crust: A xenolith perspective. Geochemistry, Geophysics, Geosystems, 14, 3844–3856.Google Scholar

  • Tipper, E.T., Galy, A., Gaillardet, J., Bickle, M.J., Elderfield, H., and Carder, E.A. (2006) The magnesium isotope budget of the modern ocean: Constraints from riverine magnesium isotope ratios. Earth and Planetary Science Letters, 250, 241–253.Google Scholar

  • Tipper, E.T., Gaillardet, J., Louvat, P., Capmas, F., and White, A.F. (2010) Mg isotope constraints on soil pore-fluid chemistry: Evidence from Santa Cruz, California. Geochimica et Cosmochimica Acta, 74, 3883–3896.Web of ScienceGoogle Scholar

  • Xiao, Y., Teng, F.-Z., Zhang, H.-F., and Yang, W. (2013) Large magnesium isotope fractionation in peridotite xenoliths from eastern North China craton: Product of melt-rock interaction. Geochimica et Cosmochimica Acta, 115, 241–261.Google Scholar

  • Yang, W., Teng, F.-Z., and Zhang, H.-F. (2009) Chondritic magnesium isotopic composition of the terrestrial mantle: A case study of peridotite xenoliths from the North China craton. Earth and Planetary Science Letters, 288, 475–482.Web of ScienceGoogle Scholar

  • Yang, W., Teng, F.Z., Li, W. Y., Liu, S.-A., Ke, S., Liu, Y.S., Zhang, H.F., and Gao, S. (2016) Magnesium isotopic composition of the deep continental crust. American Mineralogist, 101, 243–252.Google Scholar

About the article

Received: 2015-06-30

Accepted: 2015-07-10

Published Online: 2016-02-18

Published in Print: 2016-02-01

Manuscript handled by Keith Putirka.

Citation Information: American Mineralogist, Volume 101, Issue 2, Pages 241–242, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5483.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in