Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 101, Issue 5

Issues

Use of multivariate analysis for synchrotron micro-XANES analysis of iron valence state in amphiboles

M. Darby Dyar / Elly A. Breves / Mickey E. Gunter / Antonio Lanzirotti
  • Center for Advanced Radiation Sources, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jonathan M. Tucker
  • Department of Earth and Planetary Science, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C.J. Carey
  • School of Computer Sciences, University of Massachusetts at Amherst, Amherst, Massachusetts 01003, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Samantha E. Peel
  • Department of Earth and Planetary Sciences, The University of Tennessee, 1412 Circle Drive, Knoxville, Tennessee 37996, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elizabeth B. Brown / Roberta Oberti / Mirna Lerotic / Jeremy S. Delaney
  • Department of Earth and Planetary Sciences, Rutgers University, Piscataway, New Jersey 08854, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-04-30 | DOI: https://doi.org/10.2138/am-2016-5556

Abstract

Microanalysis of Fe3+/ΣFe in geological samples using synchrotron-based X-ray absorption spectroscopy has become routine since the introduction of standards and model compounds. Existing calibrations commonly use least-squares linear combinations of pre-edge data from standard reference spectra with known coordination number and valence state acquired on powdered samples to avoid preferred orientation. However, application of these methods to single mineral grains is appropriate only for isometric minerals and limits their application to analysis of in situ grains in thin sections. In this work, a calibration suite developed by acquiring X-ray absorption near-edge spectroscopy (XANES) data from amphibole single crystals with the beam polarized along the major optical directions (X, Y, and Z) is employed. Seven different methods for predicting %Fe3+ were employed based on (1) area-normalized pre-edge peak centroid, (2) the energy of the main absorption edge at the location where the normalized edge intensity has the highest R2 correlation with Fe3+/ΣFe, (3) the ratio of spectral intensities at two energies determined by highest R2 correlation with Fe3+/ΣFe, (4) use of the slope (first derivative) at every channel to select the best predictor channel, (5 and 6) partial least-squares models with variable and constant numbers of components, and (7) least absolute shrinkage and selection operator models. The latter three sophisticated multivariate analysis techniques for predicting Fe3+/ΣFe show significant improvements in accuracy over the former four types of univariate models. Fe3+/ΣFe can be measured in randomly oriented amphibole single crystals with an accuracy of ±5.5–6.2% absolute. Multivariate approaches demonstrate that for amphiboles main edge and EXAFS regions contain important features for predicting valence state. This suggests that in this mineral group, local structural changes accommodating site occupancy by Fe3+ vs. Fe2+ have a pronounced (and diagnostic) effect on the XAS spectra that can be reliably used to precisely constrain Fe3+/ΣFe.

Keywords: Amphibole; X-ray absorption spectroscopy; X-ray near-edge spectroscopy; kaersutite; potassic-magnesio-hastingsite; oxo-potassic-magnesio-hastingsite; pargasite; magnesio-hornblende; actinolite; magnesio-edenite; partial least-squares analysis; Lasso; garnet

References Cited

  • Andries, E. (2013) Sparse models by iteratively reweighted feature scaling: a framework for wavelength and sample selection. Journal of Chemometrics, 27, 50–62.Google Scholar

  • Anjos, O., Campos, M.G., Ruiz, P.C., and Antunes, P. (2015) Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chemistry, 169, 218–223.Google Scholar

  • Bajt, S., Sutton, S.R., and Delaney, J.S. (1994) Microanalysis of iron oxidation states in silicates and oxides using X-ray absorption near edge structure (XANES). Geochimica et Cosmochimica Acta, 58, 5209–5214.Google Scholar

  • Beck, P., De Andrade, V., Orthous-Daunay, F.-R., Veronesi, G., Cotte, M., Quirico, E., and Schmitt, B. (2012) The redox state of iron in the matric of CI, CM, and metamorphosed CM chondrites by XANES spectroscopy. Geochimica et Cosmochimica Acta, 99, 305–316.Google Scholar

  • Berry, A.J., Yaxley, G.M., Woodland, A.B., and Foran, G.J. (2010) A XANES calibration for determining the oxidation state of iron in mantle garnet. Chemical Geology, 278, 31–37.Google Scholar

  • Bigeleisen, J., Perlman, M.L., and Prosser, H.C. (1952) Conversion of hydrogenic materials to hydrogen for isotopic analysis. Analytical Chemistry, 24, 1356–1357.Google Scholar

  • Bonadiman, C., Nazzareni, S., Coltorti, M., Comodi, P., Giuli, G., and Faccini, B. (2014) Crystal chemistry of amphiboles: Implications for oxygen fugacity and water activity in lithospheric mantle beneath Victoria Land, Antarctica. Contributions to Mineralogy and Petrology, 167, 984.Google Scholar

  • Brouder, C.J. (1990) Angular dependence of X-ray absorption spectra. Journal de Physique, 2, 701–738.Google Scholar

  • Brown, G.E. Jr. (1970) The Crystal Chemistry of the Olivines. Virginia Polytechnic Institute and State University, Blacksburg, Virginia.Google Scholar

  • Cibin, G., Mottana, A., Marcelli, A., and Brigati, M.F. (2006) Angular dependence of potassium K-edge XANES spectra of trioctahedral micas: Significance for the determination of the local structure and electronic behavior of the interlayer site. American Mineralogist, 91, 1150–1162.Google Scholar

  • Cibin, G., Mottana, A., Marcelli, A., Cinque, G., Xu, W., Wu, Z., and Brigatti, M.F. (2010) The interlayer structure of trioctahedral lithian micas: An AXANES spectroscopy study at the potassium K-edge. American Mineralogist, 95, 1084–1094.Google Scholar

  • Clegg, S.M., Skulte, E., Dyar, M.D., Barefield, J.E., and Wiens, R.C. (2009) Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques. Spectrochimica Acta B, 88, 79–88.Google Scholar

  • Cottrell, E., Kelley, K.A., Lanzirotti, A., and Fischer, R.A. (2009) High-precision determination of iron oxidation state in silicate glasses using XANES. Chemical Geology, 268, 167–179.Google Scholar

  • Debret, B., Andreani, M., Muñoz, M., Bolfan, Casanova, N., Carlut, J., Nicollet, C., Schwartz, S., and Trcera, N. (2014) Evolution of Fe redox state in serpentine during subduction. Earth and Planetary Science Letters, 400, 206–218.Google Scholar

  • Delaney, J.S., Dyar, M.D., Sutton, S.R., and Bajt, S. (1996) Redox ratios with relevant resolution: Solving an old problem using the Synchrotron microXANES probe. Geology, 26, 139–142.Google Scholar

  • Delaney, J.S., Dyar, M.D., and Sutton, S.R. (2001) Quantifying X-ray pleochrosim effects in synchrotron micro-XANES microanalyses of elemental oxidation states: feldspar and biotite. Lunar and Planetary Science, XXXI, Abstract 1936.Google Scholar

  • Dräger, G., Frahm, R., Materlik, G., and Brümmer, O. (1988) On the multiplet character of the X-ray transitions in the pre-edge structure of Fe K absorption spectra. Physica Status Solidi, 146, 287–294.Google Scholar

  • Dyar, M.D., Mackwell, S.M., McGuire, A.V., Cross, L.R., and Robertson, J.D. (1993)Crystal chemistry of Fe3+ and H+ in mantle kaersutites: Implications for mantle metasomatism. American Mineralogist, 78, 968–979.Google Scholar

  • Dyar, M.D., Delaney, J.S., and Sutton, S.R. (2001) Fe XANES spectra of iron-rich micas. European Journal of Mineralogy, 13, 1079–1098.Google Scholar

  • Dyar, M.D., Gunter, M.E., Delaney, J.S., Lanzarotti, A., and Sutton, S.R. (2002a) Systematics in the structure and XANES spectra of pyroxenes, amphiboles, and micas as derived from oriented single crystals. Canadian Mineralogist, 40, 1347–1365.Google Scholar

  • Dyar, M.D., Gunter, M.E., Delaney, J.S., Lanzarotti, A., and Sutton, S.R. (2002b) Use of the spindle stage for orientation of single crystals for microXAS: Isotropy and anisotropy in Fe-XANES spectra. American Mineralogist, 87, 1500–1504.Google Scholar

  • Dyar, M.D., Breves, E.A., Emerson, E., Bell, S.M., Nelms, M., Ozanne, M.V., Peel, S.E., Carmosino, M.L., Tucker, J.M., Gunter, M.E., Delaney, J.S., Lanzirotti, A., and Woodland, A.B. (2012a) Accurate determination of ferric iron in garnets in bulk Mössbauer spectroscopy and synchrotron micro-XANES. American Mineralogist, 97, 1726–1740.Google Scholar

  • Dyar, M.D., Carmosino, M.L., Tucker, J.M., Brown, E.A., Clegg, S.M., Wiens, R.C, Barefield, J.E., Delaney, J.S., and Ashley, G.M., and Driese, S.G. (2012b) Remote laser-induced breakdown spectroscopy analysis of East African Rift sedimentary samples under Mars conditions. Chemical Geology, 294-295, 135–151.Google Scholar

  • Dyar, M.D., McCanta, M., Lanzirotti, A., Sutton, S., Carey, C., Mahadevan, S., and Rutherford, M. (2014) Redox state of iron in lunar glasses using X-ray absorption spectroscopy and multivariate analysis. American Geophysical Union, Fall Meeting 2014, abstract P12B-01Google Scholar

  • Dyar, M.D., McCanta, M., Breves, E., Carey, C.J., and Lanzirotti, A. (2016) Accurate predictions of iron redox state in silicate glasses: A multivariate approach. American Mineralogist, 101, 744–747.Google Scholar

  • Erdas, O., Buyukbingol, E., Alpaslan, F.N., Adejare, A. (2010) Modeling and predicting binding affinity of phencyclidine-like compounds using machine learning methods. Journal of Chemometrics, 24, 1–13.Google Scholar

  • Evans, K.A., Dyar, M.D., Reddy, S.M., Lanzirotti, A., Adams, D.T., and Tailby, N. (2014) variation in XANES in biotite as a function of orientation, crystal composition, and metamorphic history. American Mineralogist, 99, 443–457.Google Scholar

  • Filzmoser, P., Gschwandtner, M., and Todorov, V. (2012) Review of sparse methods in regression and classification with application to chemometrics. Journal of Chemometrics, 26, 42–51.Google Scholar

  • Forder, S.D., Hannant, O.M., Bingham, P.A., and Hand, R.J. (2009) Concerning the use of standards for identifying coordination environments in glasses. Journal of Physics: Conference Series, 217, 012072.Google Scholar

  • Galoisy, L., Calas, G., and Arrio, M.A. (2001) High-resolution XANES spectra of iron in minerals and glasses: structural information from the pre-edge region. Chemical Geology, 174, 307–319.Google Scholar

  • Giuli, G., Paris, E., Wu, Z., Brigatti, M.F., Cibin, G., Mottana, A., and Marcelli, A. (2001) Experimental and theoretical XANES and EXAFS study of tetra-ferriphlogopite. European Journal of Mineralogy, 13, 1099–1108.Google Scholar

  • Giuli, G., Paris, E., Pratesi, G., Koeberl, C., and Cipriani, C. (2003) Iron oxidation state in the Fe-rich layer and silica matrix of Libyan Desert Glass: A high-resolution XANES study. Meteoritics and Planetary Science, 38, 1181–1186.Google Scholar

  • Giuli, G., Eeckhout, S.G., Paris, E., Koeberl, C., and Pratesi, G. (2005) Iron oxidation state in impact glass from the K/T boundary at Beloc, Haiti, by high-resolution XANES spectroscopy. Meteoritics and Planetary Science, 40, 1575–1580.Google Scholar

  • Grossemy, F., Borg, J., Djouadi, Z., Simionovici, A., Lemelle, L., Eichert, D., Deboffle, D., Westphal, A.J., and Snead, C.J. (2007) In-site Fe XANES of extraterrestrial grains trapped in aerogel collectors: An analytical test for the interpretation of Stardust sample analyses. Planetary and Space Science, 55, 966–973.Google Scholar

  • Gunter, M.E., Belluso, E., and Mottana, A. (2007) Amphiboles: Environmental and health concerns. Reviews in Mineralogy and Geochemistry, 67, 453–516.Google Scholar

  • Gunter, M.E., Dyar, M.D., Lanzirotti, A., Tucker, J.M., and Speicher, E.A. (2011) Differences in Fe-redox for asbestiform and nonasbestiform amphiboles from the former vermiculite mine, near Libby, Montana, U.S.A. American Mineralogist, 96, 1414–1417.Google Scholar

  • Haskell, D. (1999) FLUO: Correcting XANES for self-absorption in fluorescence measurements. Advanced Photon Source, http://www.aps.anl.gov/xfd/people/ haskel/fluo.html.

  • Hastie, T., Tibshirani, R., and Friedman, J. (2009) The Elements of Statistical Learning, 2nd ed., 745 pp. Springer, New York.Google Scholar

  • Hayes, P.A., Philippa, A., Vahur, S., and Leito, I. (2014) ATR-FTIR spectroscopy and quantitative multivariate analysis of paints and coating materials. Spectrchimica Acta A, 133, 207–213.Google Scholar

  • Hecht, E. (1987) Optics, 2nd ed., pp. 603. Addison-Wesley, New York.Google Scholar

  • Holdaway, M., Dutrow, B.L., Borthwick, J., Shore, P., Harmon, R.S., and Hinton, R.W. (1986) H content of staurolite as determined by H extraction line and ion microprobe. American Mineralogist, 71, 1135–1141.Google Scholar

  • Kalivas, J.H. (1999) Interrelationships of multivariate regression methods using eigenvector basis sets. Journal of Chemometrics, 13, 1311–1329.Google Scholar

  • Kramchote, S., Nakano, K., Kanlayanarat, S., Ohashi, S., Takizawa, K., and Bai, G. (2014) Rapid determination of cabbage quality using visible and near-infrared spectroscopy. LWT-Food Science and Technology, 59, 695–700.Google Scholar

  • Lanzirotti, A. (2014) Application of hard X-ray microprobe methods to clay-rich materials. In G. Waychunas, Ed., Advanced Applications of Synchrotron Radiation in Clay Science, 19, p. 203–230. CMS Workshop Lecture Series.Google Scholar

  • Lopez-Reyes, G., Sobron, P., Lefebvre, C., and Rull, F. (2014) Multivariate analysis of Raman spectra for the identification of sulfates: Implications for ExoMars. American Mineralogist, 99, 1570–1579.Google Scholar

  • Manceau, A., Chateigner, D., and Gates, W.P. (1998) Polarized EXAFS, distance-valence least squares modeling (DVLS) and quantitative texture analysis approaches to the structural refinements of the Garfield nontronite. Physics and Chemistry of Minerals, 25, 347–365.Google Scholar

  • Manceau, A., Marcus, M.A., and Tamura, N. (2002) Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques. Reviews in Mineralogy and Geochemistry, 49, 341–428.Google Scholar

  • Marcus, M.A., Westphal, A.J., and Fakra, S.C. (2008) Classification of Fe-bearing species from K-edge XANES data using two-parameter correlation plots. Journal of Synchrotron Radiation, 15, 463–468.Google Scholar

  • McMaster, W.H., Kerr-Del Grande, N., Mallett, J.H., and Hubbell, J.H. (1969) Compilation of X-ray Cross Sections. Lawrence Radiation Laboratory Report UCRL-50174. National Bureau of Standards.Google Scholar

  • Mino, L., Borfecchia, E., Groppo, C., Castelli, D., Martinez-Criado, G., Speiss, R., and Lamberti, C. (2014) Iron oxidation state variations in zoned micro-crystals measured using micro-XANES. Catalysis Today, 229, 72–79.Google Scholar

  • Munoz, M., Vidal, O., Marcaillou, C., Pascarelli, S., Mathon, O., and Farges, F. (2013) Iron oxidation state in phyllosilicate single crystals using Fe-K pre-edge and XANES spectroscopy: Effects of the linear polarization of the synchrotron X-ray beam. American Mineralogist, 98, 1187–1197.Google Scholar

  • Oberti, R. (2010) HT behaviour and dehydrogenation processes in monoclinic and orthorhombic amphiboles of petrogenetic relevance. Plinius (a supplement to the European Journal of Mineralogy), 36, 377 (abstract).Google Scholar

  • Oberti, R., Hawthorne, F.C., Cannillo, E., and Cámara, F. (2007) Long-range order in amphiboles. Reviews in Mineralogy and Geochemistry, 67, 125–172.Google Scholar

  • Oberti, R., Cannillo, E., and Toscani, G. (2012) How to name amphiboles after the IMA2012 report: rules of thumb and a new PC program for monoclinic amphiboles. Periodico di Mineralogia, 81, 257–267.Google Scholar

  • Oberti, R., Boiocchi, M., Welch, M.D., and Zema, M. (2013) Towards a model for HT behaviour of (orthorhombic and monoclinic) amphiboles. GAC-MAC Meeting, Winnipeg, Canada, Abstracts, 153.Google Scholar

  • Ottolini, L., and Oberti, R. (2000) Accurate quantification of H, Li, Be, B, F, Ba, REE, Y, Th, and U in complex matrices: a combined approach based on SIMS and single-crystal structure-refinement. Analytical Chemistry, 72, 3731–3738.Google Scholar

  • Ottolini, L., Bottazzi, P., Zanetti, A., Vannucci, R. (1995) Determination of hydrogen in silicates by secondary ion mass spectrometry. Analyst, 120, 1309–1313.Google Scholar

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., and others. (2011) Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, 12, 2825–2830.Google Scholar

  • Petit, P.-E., Farges, F., Wilke, M., and Solé, V.A. (2001) Determination of the iron oxidation state in Earth materials using XANES pre-edge information. Journal of Synchrotron Radiation, 8, 952–954.Google Scholar

  • Pettifer, R.F., Brouder, C., Benfatto, M., Natoli, C.R., Hermes, C., and Lopez, M.F.R. (1990) Magic-angle theorem in powder X-ray absorption spectroscopy. Physical Review B, 42, 37–42.Google Scholar

  • Randall, C.R., Shu, L., Chiou, Y.-M., Hagen, K.S., Ito, M., Kitajima, N., Lachicotte, R.J., Zang, Y., and Que, L. (1995) X-ray absorption pre-edge studies of high-spin iron(II) complexes. Inorganic Chemistry, 34, 1036–1039.Google Scholar

  • Ravel, B. and Newville, M. (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537–541.Google Scholar

  • Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Quadratic elongation: A quantitative measure of distortion in coordination polyhedra. Science, 172, 567–570.Google Scholar

  • Schmid, R., Wilke, M., Oberhänsli, R., Janssens, K., Falkenberg, G., Franz, L., and Gaab, A. (2003) Micro-XANES determination of ferric iron and its application in thermobarometry. Lithos, 70, 381–390.Google Scholar

  • Scordari, F., Dyar, M.D., Schingaro, E., Lacalamita, M., and Ottolini, L. (2010) XRD, micro-XANES, EMPA, and SIMS investigation on phlogopite single crystals from Mt. Vulture (Italy). American Mineralogist, 95, 1657–1670.Google Scholar

  • Stöhr, J. (1992) NEXAFS Spectroscopy. Springer Series in Surface Science, 25, 403 p. Springer-Verlag, Berlin.Google Scholar

  • Wegelin, J.A. (2000) A survey of partial least squares (PLS) methods, with emphasis on the two-block case. Technical report, University of Washington, U.S.A.Google Scholar

  • Westre, T.E., Kennepohl, P., DeWitt, J.G., Hedman, B., Hodgson, K.O., and Solomon, E.I. (1997) A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. Journal of the American Chemical Society, 119, 6297–6314.Google Scholar

  • Wilke, M., Farges, F., Petit, P.-E., Brown, G.E. Jr., and Martin, F. (2001) Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study. American Mineralogist, 86, 714–730.Google Scholar

  • Zhang, Y.F., Yu, G.Y., Han, L., and Guo, T.T. (2015) Identification of four moth larvae based on near-infrared spectroscopy technology. Spectroscopy Letters, 48, 1–6.Google Scholar

About the article

Received: 2015-09-08

Accepted: 2016-01-18

Published Online: 2016-04-30

Published in Print: 2016-05-01


Citation Information: American Mineralogist, Volume 101, Issue 5, Pages 1171–1189, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5556.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in