Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 101, Issue 5

Issues

The elastic tensor of monoclinic alkali feldspars

Naëmi Waeselmann
  • Corresponding author
  • Department of Earth and Space Sciences, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195-1310, U.S.A
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Michael Brown
  • Department of Earth and Space Sciences, University of Washington, 4000 15th Avenue NE, Seattle, Washington 98195-1310, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ross J. Angel / Nancy Ross
  • Department of Geosciences, Virginia Tech, 4044 Derring Hall (0420), Blacksburg, Virginia 24061, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jing Zhao
  • Department of Geosciences, Virginia Tech, 4044 Derring Hall (0420), Blacksburg, Virginia 24061, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Werner Kaminsky
  • Department of Chemistry, University of Washington, 36 Bagley Hall, Seattle, Washington 98195-1700, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-04-30 | DOI: https://doi.org/10.2138/am-2016-5583

Abstract

The full elastic tensors of two K-rich monoclinic alkali feldspars, Or83Ab15 sanidine and Or93Ab7 orthoclase, have been determined by using the Impulse Stimulated Light Scattering technique to measure surface acoustic wave velocities. The new data confirm that alkali feldspars exhibit extreme elastic anisotropy, so the bounds of their isotropic average properties span a wide range. The measured adiabatic moduli are, for Or83Ab15 and Or93Ab7, respectively, KReuss = 54.7(7), 54.5(5) GPa; KVoigt = 62.9(1.1), 64.4(0.6) GPa; GReuss = 24.1(1), 24.5(1) GPa; and GVoigt = 36.1(5), 36.1(7) GPa. The small differences in moduli between the samples suggests that variations in composition and in state of Al, Si order only have minor effects on the average elastic properties of K-rich feldspars. The new measurements confirm that the earliest determinations of elastic wave velocities of alkali feldspars, widely used to calculate wave velocities in rocks, resulted in velocities systematically and significantly too slow by 10% or more.

Keywords: Alkali feldspar; elastic tensor; impulse stimulated light scattering

References cited

  • Abramson, E.H., Brown, J.M., and Slutsky, L.J. (1999) Applications of impulsive stimulated scattering in the earth and planetary sciences. Annual Review of Physical Chemistry, 50, 279–313.Google Scholar

  • Angel, R.J. (1994) Feldspars at high pressure. In I. Parsons, Ed., Feldspars and Their Reactions, p. 271–312. Kluwer, Dordrecht.Google Scholar

  • Angel, R.J. (2004) Equations of state of plagioclase feldspars. Contributions to Mineralogy and Petrology, 146, 506–512.Google Scholar

  • Angel, R.J., Sochalski-Kolbus, L.M., and Tribaudino, M. (2012) Tilts and tetrahedra: The origin of the anisotropy of feldspars. American Mineralogist, 97, 765–778.Web of ScienceGoogle Scholar

  • Angel, R.J., Ross, N.L., Zhao, J., Sochalski-Kolbus, L., Krüger, H., and Schmidt, B.U. (2013) Structural controls on the anisotropy of tetrahedral frameworks: the example of monoclinic feldspars. European Journal of Mineralogy, 25, 597–614.Web of ScienceGoogle Scholar

  • Avellaneda, M., and Milton, G.W. (1989) Optimal bounds on the effective bulk modulus of polycrystals. SIAM Journal on Applied Mathematics, 49, 824–837.Google Scholar

  • Avellaneda, M., Cherkaev, A.V., Gibiansky, L.V., Milton, G.W., and Rudelson, M. (1996) A complete characterization of the possible bulk and shear moduli of planar polycrystals. Journal of the Mechanics and Physics of Solids, 44, 1179–1218.Google Scholar

  • Brown, J.M. (2015) Determination of Hashin–Shtrikman bounds on the isotropic effective elastic moduli of polycrystals of any symmetry. Computers & Geosciences, 80, 95–99.Web of ScienceGoogle Scholar

  • Brown, J.M., Abramson, E.H., and Angel, R.J. (2006) Triclinic elastic constants for low albite. Physics and Chemistry of Minerals, 33, 256–265.Google Scholar

  • Carpenter, M.A., and Salje, E.K.H. (1994) Thermodynamics of nonconvergent cation ordering in minerals: III. Order parameter coupling in potassium feldspar. American Mineralogist, 79, 1084–1098.Google Scholar

  • Carpenter, M.A., and Salje, E.K.H. (1998) Elastic anomalies in minerals due to structural phase transitions. European Journal of Mineralogy, 10, 693–812.Google Scholar

  • Christensen, N.I. (1966) Compressional wave velocities in single crystals of alkali feldspar at pressures to 10 kilobars. Journal of Geophysical Research, 71, 3113–3116.Google Scholar

  • Hacker, B.R. (2003) Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. Journal of Geophysical Research, 108, 1–26.Google Scholar

  • Haussühl, S. (1993) Thermoelastic properties of beryl, topaz, diaspore, sanidine and periclase. Zeitschrift für Kristallographie, 204, 67–76.Google Scholar

  • Isaak, D.G., Ohno, I., and Lee, P.C. (2006) The elastic constants of monoclinic single-crystal chrome-diopside to 1,300 K. Physics and Chemistry of Minerals, 32, 691–699.Google Scholar

  • Kroll, H., and Ribbe, P.H. (1983) Lattice parameters, composition, and Al/Si order in alkali feldspars. In P.H. Ribbe, Ed., Feldspar Mineralogy, 2, p. 57–100. Reviews in Mineralogy, Mineralogical Society of America, Chantilly, Virginia.Google Scholar

  • McNeil, L.E., and Grimsditch, M. (1993) Elastic moduli of muscovite mica. Journal of Physics: Condensed Matter, 5, 1681–1690.Google Scholar

  • Newnham, R.E. (2005) Properties of Materials, 378 p. Oxford University Press, U.K.Google Scholar

  • Pleger, S. (1996) Diffuse X-ray scattering of homogeneous potassium-rich low- and high-temperature sanidines. Zeitschrift für Kristallographie, 211, 293–298.Google Scholar

  • Ryzhova, T.V., and Aleksandrov, K.S. (1965) The elastic properties of potassiun-sodium feldspars. Izvestiya of the Academy of Sciences, USSR, 89-102, Earth Physics Series, Physics of the Soldid Earth (English translation), 1, 53–56.Google Scholar

  • Salje, E.K.H. (2015) Tweed, twins, and holes. American Mineralogist, 100, 343–351.Web of ScienceGoogle Scholar

  • Sanchez-Munoz, L., Nistor, L., Van Tendeloo, G., and Sanz, J. (1998) Modulated structures in KAlSi3O8: a study by high resolution electron microscopy and 29Si MAS-NMR spectroscopy. Journal of Electron Microscopy, 47, 17–28.Google Scholar

  • Schäffer, A.-K., Jäpel, T., Zaefferer, S., Abart, R., and Rhede, D. (2014) Lattice strain across Na-K interdiffusion fronts in alkali feldspar: an electron back-scatter diffraction study. Physics and Chemistry of Minerals, 41, 795–804.Google Scholar

  • Simmons, G. (1964) Velocity of compressional waves in various minerals at pressures to 10 kilobars. Journal of Geophysical Research, 69, 1117.Google Scholar

  • Speziale, S., Reichmann, H.J., Schilling, F.R., Wenk, H.R., and Monteiro, P.J.M. (2008) Determination of the elastic constants of portlandite by Brillouin spectroscopy. Cement and Concrete Research, 38, 1148–1153.Web of ScienceGoogle Scholar

  • Tribaudino, M., Bruno, M., Nestola, F., Pasqual, D., and Angel, R.J. (2011) Thermoelastic and thermodynamic properties of plagioclase feldspars from thermal expansion measurements. American Mineralogist, 96, 992–1002.Web of ScienceGoogle Scholar

  • Williame, C., and Brown, W.L. (1974) A coherent elastic model for the determination of the orientation of exsolution boundaries: Application to the feldspars. Acta Crystallographica, A30, 316–331.Google Scholar

About the article

Current address: Florida State University, National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, FL 32311, U.S.A


Received: 2015-10-06

Accepted: 2015-12-26

Published Online: 2016-04-30

Published in Print: 2016-05-01


Citation Information: American Mineralogist, Volume 101, Issue 5, Pages 1228–1231, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5583.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in