Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 101, Issue 6


On silica-rich granitoids and their eruptive equivalents

Carol D. Frost / B. Ronald Frost / James S. Beard
Published Online: 2016-06-03 | DOI: https://doi.org/10.2138/am-2016-5307


Silica-rich granites and rhyolites are components of igneous rock suites found in many tectonic environments, both continental and oceanic. Silica-rich magmas may arise by a range of processes including partial melting, magma mixing, melt extraction from a crystal mush, and fractional crystallization. These processes may result in rocks dominated by quartz and feldspars. Even though their mineralogies are similar, silica-rich rocks retain in their major and trace element geochemical compositions evidence of their petrogenesis. In this paper we examine silica-rich rocks from various tectonic settings, and from their geochemical compositions we identify six groups with distinct origins. Three groups form by differentiation: ferroan alkali-calcic magmas arise by differentiation of tholeiite, magnesian calc-alkalic or calcic magmas form by differentiation of high-Al basalt or andesite, and ferroan peralkaline magmas derive from transitional or alkali basalt. Peraluminous leucogranites form by partial melting of pelitic rocks, and ferroan calc-alkalic rocks by partial melting of tonalite or granodiorite. The final group, the trondhjemites, is derived from basaltic rocks. Trondhjemites include Archean trondhjemites, peraluminous trondhjemites, and oceanic plagiogranites, each with distinct geochemical signatures reflecting their different origins. Volcanic and plutonic silica-rich rocks rarely are exposed together in a single magmatic center. Therefore, in relating extrusive complements to intrusive silica-rich rocks and determining whether they are geochemically identical, comparing rocks formed from the same source rocks by the same process is important; this classification aids in that undertaking.

Key words: Granite; rhyolite; geochemistry; trondhjemite; leucogranite; petrogenesis; Invited Centennial article; Review article

References Cited

  • Adam, J., Green, T.H., Soey, H.S., and Ryan, C.G. (1997) Trace element partitioning between aqueous fluids, silicate melts, and minerals. European Journal of Mineralogy, 9, 569–584.Google Scholar

  • Arth, J.G. (1976) Behavior of trace elements during magmatic processes—a summary of theoretical models and their applications. Journal of Research of the U.S. Geological Survey, 4, 41–47.Google Scholar

  • Avanzinelli, R., Bindi, L., Menchetti, S., and Conticelli, S. (2004) Crystallisation and genesis of peralkaline magmas from Pantelleria Volcano, Italy: an integrated petrological and crystal-chemical study. Lithos, 73, 41–69.Google Scholar

  • Bachmann, O., and Bergantz, G.W. (2004) On the origin of crystal-poor rhyolites: Extracted from batholithic crystal mushes. Journal of Petrology, 45, 1565–1582.Google Scholar

  • Bachmann, O., and Bergantz, G.W. (2006) Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. Journal of Volcanology and Geothermal Research, 149, 85–102.Google Scholar

  • Bachmann, O., and Bergantz, G.W. (2008a) Rhyolites and their source mushes across tectonic settings. Journal of Petrology, 49, 2277–2285.Google Scholar

  • Bachmann, O., and Bergantz, G.W. (2008b) The magma reservoirs that feed supereruptions. Elements, 4, 17–21.Google Scholar

  • Barker, F. (1979) Trondhjemite; definition, environment, and hypotheses of origin. In F. Barker, Ed., Trondhjemites, Dacites, and Related Rocks, p. 1–12. Elsevier, Amsterdam,Google Scholar

  • Basaltic Volcanism Study Project (1981) Basaltic Volcanism on the Terrestrial Planets, 1286 pp. Pergamon Press, New York.Google Scholar

  • Bateman, P.C., and Chappell, B.W. (1979) Crystallization, fractionation and solidification of the Tuolumne Intrusive series, Yosemite National Park, California. Geological Society of American Bulletin, 90, 465–482.Google Scholar

  • Bea, F. (1996) Residence of REE, Y, Th, and U in granites and crustal protoliths, implications for the chemistry of crustal melts. Journal of Petrology, 37, 521–552.Google Scholar

  • Beard, J.S. (1997) Geochemistry and petrogenesis of tonalite dikes in the Smith River allochthon, south-central Virginia. In A.K. Sinha, J.B. Whalen, and J.P. Hogan, Eds., The Nature of Magmatism in the Appalachian Orogen, 191, p. 75–86. Geological Society of America Memoir, Boulder, Colorado.Google Scholar

  • Beard, J.S. (1998) Polygenetic tonalite-trondjhemite-granodiorite (TTG) magmatism in the Smartville Complex, Northern California with a note on LILE depletions in plagiogranites. Mineralogy and Petrology, 64, 15–45.Google Scholar

  • Beard, J.S., and Lofgren, G.E. (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32, 365–401.Google Scholar

  • Best, M.G., Gromme, S., Deino, A.L., Christiansen, E.H., Hart, G.L., and Tingey, D.G. (2013) The 36–18 Ma Central Nevada ignimbrite field and calderas, Great Basin, USA: Multicyclic super-eruptions. Geosphere, 9, 1562–1636.Google Scholar

  • Blundy, J.E., and Wood, B.J. (1991) Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts and hydrothermal solutions. Geochimica et Cosmochimica Acta, 55, 191–209.Google Scholar

  • Brophy, J.G., and Dreher, S.T. (2000) The origin of composition gaps at South Sister volcano, central Oregon: implications for fractional crystallization processes beneath active calc-alkaline volcanoes. Journal of Volcanology and Geothermal Research, 102, 287–307.Google Scholar

  • Burgisser, A., and Bergantz, G.W. (2011) A rapid mechanism to remobilize highly crystalline magma bodies. Nature, 471, 212–215.Google Scholar

  • Coleman, D.S., Bartley, J.M., Glazner, A.F., and Pardue, M.J. (2012) Is chemical zonation in plutonic rocks driven by changes in source magma composition or shallow-crustal differentiation? Geosphere, 8, 1568–1587.Google Scholar

  • Dall’Agnol, R., and Oliveira, D.C. (2007) Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites. Lithos, 93, 215–233.Google Scholar

  • Defant, M.J., and Drummond, M.S. (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, 662–665.Google Scholar

  • Fierstein, J., Hildreth, W., and Calvert, A.T. (2011) Eruptive history of South Sister, Oregon Cascades, Journal of Volcanology and Geothermal Research, 207, 145–179.Google Scholar

  • Folkes, C.B., de Silva, S.L., Wright, H.M., and Cas, R.A.F. (2011) Geochemical homogeneity of a long-lived, large silicic system; evidence from the Cerro Galán caldera, NW Argentina. Bulletin of Volcanology, 73, 1455–1486.Google Scholar

  • Freund, S., Haase, K.M., Keith, M., Beier, C., and Garbe-Schönberg, D. (2014) Constraints on the formation of geochemically variable plagiogranite intrusions in the Troodos Ophiolite. Contributions to Mineralogy and Petrology, 167, 978–1000.Google Scholar

  • Frost, B.R., and Frost, C.D. (2008) A geochemical classification for feldspathic igneous rocks. Journal of Petrology, 49, 1955–1969.Google Scholar

  • Frost, C.D., and Frost, B.R. (2011) On ferroan (A-type) granitoids: their compositional variability and modes of origin. Journal of Petrology, 52, 39–53.Google Scholar

  • Frost, B.R., Arculus, R.J., Barnes, C.G., Collins, W.J., Ellis, D.J., and Frost, C.D. (2001) A geochemical classification of granitic rocks. Journal of Petrology, 42, 2033–2048.Google Scholar

  • Gagnevin, D., Daly, J.S., Poli, G., and Morgan, D. (2005) Microchemical and Sr isotopic investigation of zoned K-feldspar megacrysts: insights into the petrogenesis of a granitic system and disequilibrium crystal growth. Journal of Petrology, 46, 1689–1724.Google Scholar

  • Gill, J.B., Stork, A.K., and Whelan, P.W. (1984) Volcanism accompanying back-arc basin development in the southwest Pacific. Tectonophysics, 102, 207–224.Google Scholar

  • Glazner, A.F., Coleman, D.S., and Bartley, J.M. (2008) The tenuous connection between high-silica rhyolites and granodiorite plutons. Geology, 26, 183–186.Google Scholar

  • Halliday, A.N., Davidson, J.P., Hildreth, W., and Holden, P. (1991) Modelling the petrogenesis of high Rb/Sr silicic magmas. Chemical Geology, 92, 107–114.Google Scholar

  • Hildreth, W. (2004) Volcanogenic perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. Journal of Volcanology and Geothermal Research, 136, 169–198.Google Scholar

  • Hildreth, W., and Wilson, C.J.N. (2007) Compositional zonation of the Bishop Tuff. Journal of Petrology, 48, 951–999.Google Scholar

  • Hildreth, W., Halliday, A.N., and Christiansen, R.L. (1991) Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone plateau volcanic field. Journal of Petrology, 32, 63–138.Google Scholar

  • Hill, M., Barker, F., Hunter, D., and Knight, R. (1996) Geochemical characteristics and origin of the Lebowa granite suite, Bushveld Complex. International Geology Review, 38, 195–227.Google Scholar

  • Holtz, P.E. (1971) Plutonic Rocks of the Klamath Mountains, California and Oregon. U.S. Geological Survey Professional Paper 648-B, 20 pp.Google Scholar

  • Johnson, C.M., Czamanske, G.K., and Lipman, P.W. (1989) Geochemistry of intrusive rocks associated with the Latir volcanic field, New Mexico, and contrasts between evolution of plutonic and volcanic rocks. Contributions to Mineralogy and Petrology, 103, 90–109.Google Scholar

  • Johnson, K., Barnes, C.G., and Miller, C.A. (1997) Petrology, geochemistry and genesis of high-Al tonalite and trondjhemites of the Cornucopia stock, Blue Mountains, Northeastern Oregon. Journal of Petrology, 38, 1585–1611.Google Scholar

  • Keppler, H. (1993) Influence of fluorine on the enrichment of high field strength elements in granitic rocks. Contributions to Mineralogy and Petrology, 114, 479–488.Google Scholar

  • Kleeman, G.J., and Twist, D. (1989) The compositionally zoned sheet-like granite pluton of the Bushveld Complex: Evidence bearing on the nature of A-type magmatism. Journal of Petrology, 30, 1383–1414.Google Scholar

  • Koepke, J., Berndt, J., Feig, S.T., and Holtz, F. (2007) The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contributions to Mineralogy and Petrology, 153, 67–84.Google Scholar

  • Korringa, M.K., and Nobel, D.C. (1970) Distribution of Sr and Ba between natural feldspar and igneous melt. Earth and Planetary Science Letters, 11, 147–151.Google Scholar

  • Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., and Zanettin, B.A. (1986) Chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745–750.Google Scholar

  • Le Maitre, R.W. (1989) A Classification of the Igneous Rocks and Glossary of Terms, 193 p. Blackwell, Oxford.Google Scholar

  • Lee, C-T.A., and Morton, D.M. (2015) High silica granites: terminal porosity and crystal settling in shallow magma chambers. Earth and Planetary Science Letters, 409, 23–31.Google Scholar

  • Long, P.E. (1978) Experimental determination of partition coefficients for Rb, Sr, and Ba between alkali feldspar and silicate liquid. Geochimica et Cosmochima Acta, 42, 833–846.Google Scholar

  • Luhr, J.F. (1990) Experimental phase relations of water- and sulfur-saturated arc magmas and the 1982 eruptions of El Chichon Volcano. Journal of Petrology, 31, 1071–1114.Google Scholar

  • Mahood, G.A. (1990) Second reply to comment of R.S.J. Sparks, H.E. Huppert & C.J N. Wilson on ‘Evidence for long residence times of rhyolitic magma in the Long Valley magmatic system: the isotopic record in precaldera lavas of Glass Mountain’. Earth and Planetary Science Letters, 99, 395–399.Google Scholar

  • Mahood, G., and Hildreth, W. (1983) Large partition coefficients for trace elements in high-silica rhyolites. Geochimica et Cosmochima Acta, 47, 11–30.Google Scholar

  • Marsh, B.D., and Maxey, M.R. (1985) On the distribution and separation of crystals in convecting magma. Journal of Volcanology and Geothermal Research, 24, 95–150.Google Scholar

  • Martin, H. (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46, 411–429.Google Scholar

  • Mathez, E.A., VanTongeren, J.A., and Schweitzer, J. (2013) On the relationships between the Bushveld Complex and its felsic roof rocks, part 1: petrogenesis of Rooiberg and related felsites. Contributions to Mineralogy and Petrology, 166, 435–449.Google Scholar

  • McCurry, M., Hayden, K.P., Morse, L.H., and Mertzman, S. (2008) Genisis of post-hotspot, A-type rhyolite of the Eastern Snake River Plain volcanic field by extreme fractional crystallization of olivine tholeiite. Bulletin of Volcanology, 10, 361–383.Google Scholar

  • Moyen, J.-F. (2009) High Sr/Y and La/Yb ratios; the meaning of the “adakitic signature.” Lithos, 112, 556–574.Google Scholar

  • Moyen, J.-F. and Martin, H. (2012) Forty years of TTG research. Lithos, 148, 312–336.Google Scholar

  • Nabelek, P.I., and Bartlett, C.D. (1998) Petrologic and geochemical links between the post-collisional Proterozoic Harney Peak leucogranite, South Dakota, USA, and its source rocks. Lithos, 45, 71–85.Google Scholar

  • Nabelek, P.I., and Glascock, M.D. (1995) REE-depleted leucogranites, Black Hills, South Dakota: a consequence of disequilibrium melting of monazite-bearing schists. Journal of Petrology, 36, 1055–1071.Google Scholar

  • Nabelek, P.I., Russ-Nabelek, C., and Denison, J.R. (1992) The generation and crystallization conditions of the Proterozoic Harney Peak Leucogranites, Black Hills, South Dakota, USA: petrologic and geochemical constraints. Contributions to Mineralogy and Petrology, 110, 173–191.Google Scholar

  • Nardi, L.V.S., Formoso, M.L.L., Müller, I.F., Fontana, E., Jarvis, K., and Lamarão, C. (2013) Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: uses for provenance and mineral exploration purposes. Chemical Geology, 335, 1–7.Google Scholar

  • Nash, W.P., and Crecraft, H.R. (1985) Partition coefficients for trace elements in silicic magmas. Geochimica et Cosmochimica Acta, 49, 2309–2322.Google Scholar

  • Neave, D.A., Fabbro, G., Herd, R.A., Petrone, C.M., and Edmonds, M. (2012) Melting, differentiation and degassing at the Pantelleria volcano, Italy. Journal of Petrology, 53, 637–663.Google Scholar

  • Oliveira, D.C., Dall’Agnol, R., Barros, C.E.M., and Oliveira, M.A. (2009) Geology, geochemistry and magmatic evolution of the Paleoproterozoic, anorogenic oxidized A-type Redenção granite of the Jamon suite, eastern Amazonian craton, Brazil. Canadian Mineralogist, 47, 1441–1468.Google Scholar

  • Patiño Douce, A. (1997) Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25, 743–746.Google Scholar

  • Patiño Douce, A.E., and Beard, J.S. (1995) Dehydration melting of biotite gneiss and quartz amphibolite from 3 to 15 kbars. Journal of Petrology, 36, 707–738.Google Scholar

  • Patiño Douce, A.E., and Harris, N. (1998) Experimental constraints on Himalayan anatexis. Journal of Petrology, 39, 689–710.Google Scholar

  • Peacock, M.A. (1931) Classification of igneous rock series. Journal of Geology, 39, 54–67.Google Scholar

  • Pearce, J.A., and Norry, M.J. (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69, 33–47.Google Scholar

  • Pearce, J.A., Harris, N.B.W., and Tindle, A.G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956–983.Google Scholar

  • Pichavant, M., Kontak, D.J., Herrera, J.V., and Clark, A.H. (1988a) The Miocene-Pliocene Macusani Volcanics, SE Peru I. Mineralogy and magmatic evolution of a two-mica aluinosilicate-bearing ignimbrite suite. Contributions to Mineralogy and Petrology, 100, 300–324.Google Scholar

  • Pichavant, M., Kontak, D.J., Briqueu, L., Valencia Herrera, J., and Clark, A.H. (1988b) The Miocene-Pliocene Macsani Volcanics, SE Peru II. Geochemistry and origin of a felsic peraluminous magma. Contributions to Mineralogy and Petrology, 100, 325–338.Google Scholar

  • Rapp, R.P., and Watson, E.B. (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology, 36, 891–931.Google Scholar

  • Rapp, R.P., Watson, E.B., and Miller, C.F. (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research, 51, 1–25.Google Scholar

  • Rollinson, H. (2009) New models for the genesis of plagiogranites in the Oman ophiolite. Lithos, 112, 603–634.Google Scholar

  • Rollinson, H.R., and Fowler, M.B. (1987) The magmatic evolution of the Scourian complex at Gruinard Bay. In R.G. Park and J. Tarney, Eds., Evolution of the Lewisian and Comparable Precambrian High Grade Terranes. Geological Society of London Special Publication 27, 57–71.Google Scholar

  • Rollinson, H.R., and Windley, B.F. (1980) An Archean granulite-grate tonalite-trondhjemite-granite suite from Scourie, NW Scotland: Geochemistry and origin. Contributions to Mineralogy and Petrology, 72, 265–281.Google Scholar

  • Rudnick, R.L., and Gao, S. (2003) Composition of the Continental Crust. In R.L. Rudnick, Ed., The Crust, Treatise on Geochemistry, 3, p. 1–64. Elsevier-Pergamon, Oxford.Google Scholar

  • Sawka, W.N., Chappell, B.W., and Kistler, R.W. (1990) Granitoid compositional zoning by side-wall boundary layer differentiation; evidence from the Palisade Crest intrusive suite, central Sierra Nevada, California. Journal of Petrology, 31, 519–553.Google Scholar

  • Schmitt, A.K., Emmermann, R., Trumbull, R.B., Bühn, B., and Henjes-Kunst, F. (2000) Petrogenesis and 40Ar/39Ar geochronology of the Brandberg Complex, Namibia: Evidence for a major mantle contribution in metaluminous and peralkaline granites. Journal of Petrology, 41, 1207–1239.Google Scholar

  • Shand, S.J. (1927) The Eruptive Rocks, 360 pp. Van Nostrand, New York.Google Scholar

  • Skjerlie, K.P., and Johnston, A.D. (1993) Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: Implications for the generation of anorogenic granites. Journal of Petrology, 34, 785–815.Google Scholar

  • Sorensen, H. (1997) The agpaitic rocks; an overview. Mineralogical Magazine, 61, 485–498.Google Scholar

  • Spulber, S.D., and Rutherford, M.J. (1983) The origin of rhyolite and plagiogranite in the oceanic crust: an experimental study. Journal of Petrology, 24, 1–25.Google Scholar

  • Stelten, M.E., and Cooper, K.M. (2012) Constraints on the nature of the subvolcanic reservoir at South Sister volcano, Oregon from U-series dating combined with sub-crystal trace-element analysis of plagioclase and zircon. Earth and Planetary Science Letters, 313-314, 1–11.Google Scholar

  • Stork, A.L. (1984) Silicic magmatism in an Island Arc, Fiji, Southwest Pacific: Implications for Continental Growth. Ph.D. dissertation, University of California, Santa Cruz, 273 pp.Google Scholar

  • Taylor, S.R., and McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution, 312 pp. Blackwell, Oxford.Google Scholar

  • Visona, D., and Lombardo, B. (2002) Two-mica and tourmaline leucogranites from the Everest-Makalu region (Nepal-Tibet). Himalayan leucogranite genesis by isobaric heating? Lithos, 62, 125–150.Google Scholar

  • Watson, E.B. (1979) Zircon saturation in felsic liquids: Experimental results and applications to trace element geochemistry. Contributions to Mineralogy and Petrology, 70, 407–419.Google Scholar

  • Watson, E.B., and Harrison, T.M. (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295–304.Google Scholar

  • Weiss, S., and Troll, G. (1989) The Ballachulish igneous complex, Scotland: petrography, mineral chemistry, and order of crystallization in the monzodiorite-quartz diorite suite and in the granite. Journal of Petrology, 30, 1069–1115.Google Scholar

  • Whalen, J.B., and Currie, K.L. (1984) The Topsails igneous terrane, Western Newfoundland: Evidence for magma mixing. Contributions to Mineralogy and Petrology, 87, 319–327.Google Scholar

  • Whalen, J.B., Jenner, G.A., Longstaff, F.J., Robert, F., and Gariépy, C. (1996) Geochemical and isotopic (O,Nd, Pb, and Sr) eonstrains on A-type granite petrogenesis based on the Topsails Igneous Suite, Newfoundland Appalachians. Journal of Petrology, 37, 1463–1489.Google Scholar

  • White, J.C., Parker, D.F., and Ren, M. (2009) The origin of trachyte and pantellerite from Pantelleria, Italy: Insights from major element, trace element, and thermodynamic modeling. Journal of Volcanology and Geothermal Research, 179, 33–55.Google Scholar

  • Xiong, X., Keppler, H., Audétat, A., Ni, H., Sun, W., and Li, Y. (2011) Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochimica et Cosmochimica Acta, 75, 1673–1692.Google Scholar

  • Yang, P., and Rivers, T. (2000) Trace element partitioning between existing biotite and muscovite from metamorphic rocks, Western Labrador: Structural, compositional and thermal controls. Geochimica et Cosmochimica Acta, 64, 1451–1472.Google Scholar

  • Zen, E.A. (1986) Aluminum enrichment in silicate melts by fractional crystallization: Some mineralogic and petrographic constraints. Journal of Petrology, 27, 1095–1117.Google Scholar

About the article

Received: 2015-01-18

Accepted: 2015-10-27

Published Online: 2016-06-03

Published in Print: 2016-06-01

Citation Information: American Mineralogist, Volume 101, Issue 6, Pages 1268–1284, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5307.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in