Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 101, Issue 6


High-pressure behavior of the polymorphs of FeOOH

Mary M. Reagan / Arianna E. Gleason / Luke Daemen / Yuming Xiao / Wendy L. Mao
  • Department of Geological Sciences, Stanford University, Stanford, California 94305, U.S.A
  • Photon Science, SLAC National Accelerator Laboratory, Menlo Park, California 94025, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-03 | DOI: https://doi.org/10.2138/am-2016-5449


The high-pressure structural and electronic behavior of α-, β-, and g-FeOOH were studied in situ using a combination of synchrotron X ray diffraction (XRD) and X ray emission spectroscopy (XES). We monitored α-FeOOH by XES as a function of pressure up to 85 GPa and observed an electronic spin transition that began at approximately 50 GPa, which is consistent with previous results. In the γ-FeOOH sample, we see the initiation of a spin transition at 35 GPa that remains incomplete up to 65 GPa. β-FeOOH does not show any indication of a spin transition up to 65 GPa. Analysis of the high-pressure XRD data shows that neither β-FeOOH nor γ-FeOOH transform to new crystal structures, and both amorphize above 20 GPa. Comparing our EOS results for the b and g phases with recently published data on the a and e phases, we found that β-FeOOH exhibits distinct behavior from the other three polymorphs, as it is significantly less compressible and does not undergo a spin transition. A systematic examination of these iron hydroxide polymorphs as a function of pressure can provide insight into the relationship between electronic spin transitions and structural transitions in these OH- and Fe3+-bearing phases that may have implications on our understanding of the water content and oxidation state of the mantle.

Key words: Spin transitions; high-pressure studies; XES; FeOOH; XRD data

References cited

  • Benoit, M., Marx, D., and Parrinello, M. (1998) Tunnelling and zero-point motion in high-pressure ice. Nature, 392, 258–261.Google Scholar

  • Birch, F. (1978) Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. Journal of Geophysical Research, 83, 1257–1268.Google Scholar

  • Bolotina, N., Molchanov, V., Dyuzheva, T., Lityagina, L., and Bendeliani, N. (2008) Single-crystal structures of high-pressure phases FeOOH, FeOOD, and GaOOH. Crystallography Reports, 53, 960–965.Web of ScienceGoogle Scholar

  • Friedrich, A., Haussül, E., Boehler, R., Morgenroth, W., Juarez-Arellano, E.A., and Winkler, B. (2007) Single-crystal structure refinement of diaspore at 50 GPa. American Mineralogist, 92, 1640–1644.Web of ScienceGoogle Scholar

  • Frost, D.J., and McCammon, C.A. (2008) The redox state of Earth’s mantle. Annual Review of Earth and Planetary Sciences, 36, 389–420.Google Scholar

  • Gerth, J. (1990) Unit-cell dimensions of pure and trace metal-associated goethites. Geochimica et Cosmochimica Acta, 54, 363–371.Google Scholar

  • Gilli, G., and Gilli, P. (2009) The Nature of the Hydrogen Bond. Oxford University Press, New York.Google Scholar

  • Gleason, A.E., Jeanloz, R., and Kunz, M. (2008) Pressure-temperature stability studies of FeOOH using X ray diffraction. American Mineralogist, 93, 1882–1885.Web of ScienceGoogle Scholar

  • Gleason, A.E., Quiroga, C.E., Suzuki, A., Pentcheva, R., and Mao, W.L. (2013) Symmetrization driven spin transition in e-FeOOH at high pressure. Earth and Planetary Science Letters, 379, 49–55.Google Scholar

  • Hammersley, A.P. (1998) Fit2D: V99.129 Reference Manual Version 3.1. Internal Report ESRF-98-HA01.Google Scholar

  • Heinz, D., and Jeanloz, R. (1984) The equation of state of the gold calibration standard. Journal of Applied Physics, 55, 885–893.Google Scholar

  • Holzapfel, W.B. (1972) Symmetry of the hydrogen bonds in Ice VII. Journal of Chemical Physics, 56, 712–715.Google Scholar

  • Kosmulski, M., Maczka, E., Jartych, E., and Rosenholm, J.B. (2003) Synthesis and characterization of goethite and goethite-hematite composite: Experimental study and literature survey. Advances in Colloid and Interface Science, 103, 57–76.Google Scholar

  • Lin, J.F., and Tsuchiya, T. (2008) Spin transition of iron in the Earth’s lower mantle. Physics of the Earth and Planetary Interiors, 170, 248–259.Google Scholar

  • Lin, J.F., Vankó, G., Jacobsen, S.D., Iota, V., Struzhkin, V.V., Prakapenka, V.B., Kuznetsov, A., and Yoo, C.-S. (2007) Spin transition zone in Earth’s lower mantle. Science, 317, 1740–1743.Google Scholar

  • Lin, J.F., Speziale, S., Mao, Z., and Marquardt, H. (2013) Effects of the electronic spin transitions of iron in lower mantle minerals: Implications for deep mantle geophysics and geochemistry. Reviews of Geophysics, 51, 244–275.Web of ScienceGoogle Scholar

  • Lutterotti, L., Matthies, S., Wenk, H.-R., Schultz, A.S., and Richardson, J.W. (1997) Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. Journal of Appied Physics, 81, 594–600.Google Scholar

  • Mao, H.K., Xu, J., and Bell, P.M. (1978) High pressure physics: Sustained static generation of 1.36 to 1.72 megabars. Science, 200, 1145–1147.Google Scholar

  • Mattila, A., Pylkkänen, T., Rueff, J-P., Huotari, S., Vankó, G., Hanfland, M., Lehtinen, M., and Hämäläinen, K. (2007) Pressure induced magnetic transition in siderite FeCO3 studied by X ray emission spectroscopy. Journal of Physics, 19, 386206.Google Scholar

  • Momma, K., and Izumi, F. (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Appied Crystallography, 41, 653–658.Google Scholar

  • Otte, K., Pentcheva, R., Schmahl, W.W., and Rustad, J.R. (2009) Pressure-induced structural and electronic transitions in FeOOH from first principles. Physical Review B, 80, 205116.Google Scholar

  • Sano, A., Ohtani, E., Kubo, T., and Funakoshi, K.I. (2004) In situ X ray observation of decomposition of hydrous aluminum silicate AlSiO3OH and aluminum oxide hydroxide d-AlOOH at high pressure and temperature. Journal of Physics and Chemistry of Solids, 65, 1547–1554.Google Scholar

  • Skoog, D.A., West, D.M., and Holler, F.J. (1996) Fundamentals of Analytical Chemistry, 7th ed. Thomson, Belmont, California.Google Scholar

  • Speziale, S., Milner, A, Lee, V.E., Clark, S.M., Pasternak, M.P., and Jeanloz, R. (2005) Iron spin transition in Earth’s mantle. Proceedings of the National Academy of Sciences, 102, 17918–17922.Google Scholar

  • Stackhouse, S., Brodholt, J.P., and Price, G.D. (2007) Electronic spin transitions in iron-bearing MgSiO3 perovskite. Earth and Planetary Science Letters, 253, 282–290.Web of ScienceGoogle Scholar

  • Suzuki, A. (2010) High-pressure X ray diffraction study of ∊-FeOOH. Physics and Chemistry of Minerals, 37, 153–157.Google Scholar

  • Schwertmann, U., and Cornell, R.M. (2000) The Iron Oxides in the Laboratory, 2nd ed. Wiley-VCH, Weinheim.Google Scholar

  • Voigt, R., and Will, G. (1981) The system Fe2O3-H2O under high pressures. Neues Jahrbuch für Mineralogie, 2, 89–96.Google Scholar

  • Wang, X., Chen, X., Gao, L., Zheng, H., Ji, M., Tang, C., Shen, T., and Zhang, Z. (2004) Synthesis of β-FeOOH and α-Fe2O3 nanorods and electrochemical properties of β-FeOOH. Journal of Material Chemistry, 905–907.Google Scholar

  • Williams, Q., and Hemley, R. (2001) Hydrogen in the deep earth. Annual Review of Earth and Planetary Sciences, 29, 365–418.Google Scholar

  • Xu, W., Greenberg, E., Rozenberg, G.K., Pasternak, M.P., Bykova, E., Boffa-Ballaran, T., Dubrovinsky, L., Prakapenka, V., Hanfland, M., Vekliova, O., and others. (2013) Pressure-induced hydrogen bond symmetrization in iron oxyhydroxide. Physical Review Letters, 111, 175501.Web of ScienceGoogle Scholar

About the article

Received: 2015-06-05

Accepted: 2016-02-16

Published Online: 2016-06-03

Published in Print: 2016-06-01

Citation Information: American Mineralogist, Volume 101, Issue 6, Pages 1483–1488, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5449.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in