Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 101, Issue 6

Issues

High-temperature and high-pressure behavior of carbonates in the ternary diagram CaCO3-MgCO3-FeCO3

Marco Merlini
  • Corresponding author
  • Università degli Studi di Milano, Dipartimento di Scienze della Terra, Via Botticelli, 23, 20133 Milano, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francesca Sapelli
  • Università degli Studi di Milano, Dipartimento di Scienze della Terra, Via Botticelli, 23, 20133 Milano, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Patrizia Fumagalli
  • Università degli Studi di Milano, Dipartimento di Scienze della Terra, Via Botticelli, 23, 20133 Milano, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G. Diego Gatta
  • Università degli Studi di Milano, Dipartimento di Scienze della Terra, Via Botticelli, 23, 20133 Milano, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paolo Lotti
  • Università degli Studi di Milano, Dipartimento di Scienze della Terra, Via Botticelli, 23, 20133 Milano, Italy
  • Elettra Sincrotrone Trieste S.c.P.A., Strada Statale 14, km 163.5, 34149 Basovizza, Trieste, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Simone Tumiati
  • Università degli Studi di Milano, Dipartimento di Scienze della Terra, Via Botticelli, 23, 20133 Milano, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mahmoud Aabdellatief
  • Elettra Sincrotrone Trieste S.c.P.A., Strada Statale 14, km 163.5, 34149 Basovizza, Trieste, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aandrea Lausi
  • Elettra Sincrotrone Trieste S.c.P.A., Strada Statale 14, km 163.5, 34149 Basovizza, Trieste, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jasper Plaisier
  • Elettra Sincrotrone Trieste S.c.P.A., Strada Statale 14, km 163.5, 34149 Basovizza, Trieste, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Hanfland / Wilson Crichton / Julien Chantel / Jeremy Guignard / Carlo Meneghini
  • Dipartimento di Scienze, Università Degli Studi Roma TRE, Via della Vasca Navale 84-00146 Roma, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alessandro Pavese
  • Università degli Studi di Milano, Dipartimento di Scienze della Terra, Via Botticelli, 23, 20133 Milano, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefano Poli
  • Università degli Studi di Milano, Dipartimento di Scienze della Terra, Via Botticelli, 23, 20133 Milano, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-03 | DOI: https://doi.org/10.2138/am-2016-5458

Abstract

We report the thermal expansion and the compressibility of carbonates in the ternary compositional diagram CaCO3-MgCO3-FeCO3, determined by in situ X-ray powder and single-crystal diffraction. High-temperature experiments were performed by high-resolution X-ray synchrotron powder diffraction from ambient to decarbonation temperatures (25–850 °C). Single-crystal synchrotron X ray diffraction experiments were performed in a variable pressure range (0–100 GPa), depending on the stability field of the rhombohedral structure at ambient temperature, which is a function of the carbonate composition. The thermal expansion increases from calcite, CaCO3, α0 = 4.10(7) ×10–5 K–1, to magnesite, MgCO3, α0 = 7.04(2) ×10–5 K–1. In the magnesite-siderite (FeCO3) join, the thermal expansion decreases as iron content increases, with an experimental value of α0 = 6.44(4) ×10–5 K–1 for siderite. The compressibility in the ternary join is higher (i.e., lower bulk modulus) in calcite and Mg-calcite [K0 = 77(3) GPa for Ca0.91Mg0.06Fe0.03(CO3)] than in magnesite, K0 = 113(1) GPa, and siderite, K0 = 125(1) GPa. The analysis of thermal expansion and compressibility variation in calcite-magnesite and calcite-iron-magnesite joins clearly shows that the structural changes associated to the order-disorder transitions [i.e., R3c calcite-type structure vs. R3 CaMg(CO3)2 dolomite-type structure] do not affect significantly the thermal expansion and compressibility of carbonate. On the contrary, the chemical compositions of carbonates play a major role on their thermo-elastic properties. Finally, we use our P-V-T equation of state data to calculate the unit-cell volume of a natural ternary carbonate, and we compare the calculated volumes to experimental observations, measured in situ at elevated pressure and temperatures, using a multi-anvil device. The experimental and calculated data are in good agreement demonstrating that the equation of state here reported can describe the volume behavior with the accuracy needed, for example, for a direct chemical estimation of carbonates based on experimental unit-cell volume data of carbonates at high pressures and temperatures.

Key words: Carbonates; high temperature; high pressure; equation of state

References cited

  • Angel, R.J. (2000) High-pressure, high-temperature crystal chemistry. Reviews in Mineralogy and Geochemistry, 41, 35–59.Google Scholar

  • Angel, R.J., Alvaro, M., and Gonzalez-Platas, J. (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie-Crystalline Materials, 229, 405–419.Google Scholar

  • Antao, S.M., Hassan, I., Mulder, W.H., Lee, P.L., and Toby, B.H. (2009) In situ study of the R3c to R3m orientational disorder in calcite. Physics and Chemistry of Minerals, 36, 159–169.Google Scholar

  • Berg, G.W. (1986) Evidence for carbonate in the mantle. Nature, 324, 50–51.Google Scholar

  • Boulard, E., Guyot, F., and Fiquet, G. (2012) The influence on Fe content on Raman spectra and unit cell parameters of magnesite–siderite solid solutions. Physics and Chemistry of Minerals, 39, 239–246.Google Scholar

  • Busing, W., and Levy, H.A. (1967) Angle calculations for 3- and 4-circle X-ray and neutron diffractometers. Acta Crystallographica, 22, 457–464.Google Scholar

  • Colonna, F., Fasolino, A., and Meijer, E.J. (2011) High-pressure high-temperature equation of state of graphite from Monte Carlo simulations. Carbon, 49, 364–368.Google Scholar

  • Datchi, F., LeToullec, R., and Loubeyre, P. (1997) Improved calibration of the SrB4O7: Sm2+ optical pressure gauge: Advantages at very high pressures and high temperatures. Journal of Applied Physics, 81, 3333–3339.Google Scholar

  • Dewaele, A., Fiquet, G., Andrault, D., and Hausermann, D. (2000) P-V-T equation of state of periclase from synchrotron radiation measurements. Journal of Geophysical Research, 105, 2869–2877.Google Scholar

  • Dove, M.T., and Powell, B.M. (1989) Neutron diffraction study of the tricritical orientational order/disorder phase transition in calcite at 1260 K. Physics and Chemistry of Minerals, 16, 503–507.Google Scholar

  • Dove, M.T., Swainson, I.P., Powell, B.M., and Tennant, D.C. (2005) Neutron powder diffraction study of the orientational order-disorder phase transition in calcite, CaCO3. Physics and Chemistry of Minerals, 32, 493–503.Google Scholar

  • Effenberger, H., Mereiter, K., and Zemann, J. (1981) Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates. Zeitschrift für Kristallographie, 156, 233–243.Google Scholar

  • Fei, Y. (1995) Thermal expansion. In T.J. Ahrens, Ed., Mineral Physics and Crystallography: A handbook of physical constants. American Geophysical Union, Washington, D.C.Google Scholar

  • Fiquet, G., Guyot, F., and Itie, J.-P. (1994) High-pressure X-ray diffraction study of carbonates: MgCO3, CaMg(CO3)2, and CaCO3. American Mineralogist, 79, 15–23.Google Scholar

  • Fiquet, G., Guyot, F., Kunz, M., Matas, J., Andrault, D., and Hanfland, M. (2002) Structural refinements of magnesite at very high pressure. American Mineralogist, 87, 1261–1265.Google Scholar

  • Forman, R.A., Piermarini, G.J., Barnett, J.D., and Block, S. (1972) Pressure measurement made by the utilization of ruby sharp-line luminescence. Science, 176, 284–285.Google Scholar

  • Franzolin, E., Schmidt, M.W., and Poli, S. (2011) Ternary Ca-Fe-Mg carbonates: Subsolidus phase relations at 3.5 GPa and a thermodynamic solid solution model including order/disorder. Contributions to Mineralogy and Petrology, 161, 213–227.Google Scholar

  • Franzolin, E., Merlini, M., Poli, S., and Schmidt, M.W. (2012) The temperature and compositional dependence of disordering in Fe-bearing dolomites. American Mineralogist, 97, 1676–1684.Google Scholar

  • Hammouda, T., Andrault, D., Koga, K., Katsura, T., and Martin, A.M. (2011) Ordering in double carbonates and implications for processes at subduction zones. Contributions to Mineralogy and Petrology, 161, 439–450.Google Scholar

  • Hanfland, M., Syassen, K., and Sonnenschein, R. (1989) Graphite under pressure—Equation of state and 1st-order Raman modes. Physical Review B, 40, 1951–1954.Google Scholar

  • Hazen, R.M. (1976) Effects of temperature and pressure on the cell dimension and X ray temperature factors of periclase. American Mineralogist, 61, 266–271.Google Scholar

  • Holland, T.J.B., and Powell, R. (1998) An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, 309–343.Google Scholar

  • Holland, T.J.B., and Powell, R. (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29, 333–383.Google Scholar

  • Hugh-Jones, D. (1997) Thermal expansion of MgSiO3 and FeSiO3 ortho- and clinopyroxenes. American Mineralogist, 82, 689–696.Google Scholar

  • Ishizawa, N., Setoguchi, H., and Yanagisawa, K. (2013) Structural evolution of calcite at high temperatures: Phase V unveiled. Scientific Reports, 3, 2832.Google Scholar

  • Kang, N., Schmidt, M.W., Poli, S., Franzolin, E., and Connolly, J.D. (2015) Melting of siderite to 20 GPa and thermodynamic properties of FeCO3-melt. Chemical Geology, 400, 34–43.Google Scholar

  • Kihara, K. (1990) An X-ray study of the temperature dependence of the quartz structure. European Journal of Mineralogy, 2, 63–77.Google Scholar

  • Larson, A.C., and Von Dreele, R.B. (1994) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86-748.Google Scholar

  • Lavina, B., Dera, P., Downs, R.T., Yang, W.G., Sinogeikin, S., Meng, Y., Shen, G.Y., and Schiferl, D. (2010a) Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition. Physical Review B, 82, 064110.Google Scholar

  • Lavina, B., Dera, P., Downs, R.T., Tschauner, O., Yang, W.E., Shebanova, O., and Shen, G.Y. (2010b) Effect of dilution on the spin pairing transition in rhombohedral carbonates. High Pressure Research, 30, 224–229.Google Scholar

  • Lin, J.F., Liu, J., Jacobs, C., and Prakapenka, V.B. (2012) Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron. American Mineralogist, 97, 583–591.Google Scholar

  • Litasov, K.D., Shatskiy, A., Gavryushkin, P.N., Sharygin, I.S., Dorogokupets, P.I., Dymshits, A.M., Ohtani, E., Higo, Y., and Funakoshi, K. (2013) P-V-T equation of state of siderite to 33 GPa and 1673 K. Physics of the Earth and Planetary Interiors, 224, 83–87.Google Scholar

  • Mao, H.K., Xu, J., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91, 4673–4676.Google Scholar

  • Mao, Z., Armentrout, M., Rainey, E.S.G., Manning, C.E., Dera, P., Prakapenka, V., and Kavner, A. (2011) Dolomite III: A new candidate lower mantle carbonate. Geophysical Research Letters, 38, L22303.Google Scholar

  • Markgraf, S.A., and Reeder, R.J. (1986) High-temperature crystal chemistry of dolomite. American Mineralogist, 71, 795–804.Google Scholar

  • Markgraf, S.A., and Reeder, R.J. (1985) High-temperature structure refinements of calcite and magnesite. American Mineralogist, 70, 590–600.Google Scholar

  • Mattila, A., Pylkkanen, T., Rueff, J.P., Huotari, S., Vanko, G., Hanfland, M., Lehtinen, M., and Hamalainen, K. (2007) Pressure induced magnetic transition in siderite FeCO3 studied by X-ray emission spectroscopy. Journal of Physics-Condensed Matter, 19, 386206.Google Scholar

  • Merrill, L., and Bassett, W.A. (1975) The crystal structure of CaCO3(II), a high-pressure metastable phase of calcium carbonate. Acta Crystallographica, B31, 343–349.Google Scholar

  • Merlini, M., and Hanfland, M. (2013) Single-crystal diffraction at megabar conditions by synchrotron radiation. High Pressure Research, 33, 511–522.Google Scholar

  • Merlini, M., Crichton, W., Hanfland, M., Gemmi, M., Müller, H., Kupenko, I., and Dubrovinsky, L. (2012) Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proceedings of the National Academy of Sciences, 109, 13509–13514.Google Scholar

  • Miletich, R., Gatta, G.D., Willi, T., Mirwrwald, P.W., Lotti, P., Merlini, M., Rotiroti, N., and Loerting, T. (2014) Cordierite under hydrostatic compression: Anomalous elastic behavior as a precursor for a pressure-induced phase transition. American Mineralogist, 99, 479–493.Google Scholar

  • Mirwald, P.W. (1976) A differential thermal analysis study of the high-temperature polymorphism of calcite at high pressure. Contributions to Mineralogy and Petrology, 59, 33–40.Google Scholar

  • Navon, O. (1999) Diamond formation in the Earth’s mantle. In J.J. Gurney, J.L. Gurney, M.D. Pascoe, and S.H. Richardson, Eds., VII International Kimberlite conference 2, 584–604. Red Roof Design, Cape Town.Google Scholar

  • Oganov, A.R., Hemley, R.J., Hazen, R.M., and Jones, A.P. (2013) Structure, bonding, and mineralogy of carbon at extreme conditions. Reviews in Mineralogy and Geochemistry, 75, 47–77.Google Scholar

  • Oxford Diffraction (2008) Crysalis RED, Version 1.171.32.29.

  • Pawley, A.R., Redfern, S.A.T., and Holland, J.B. (1996) Volume behavior of hydrous minerals at high pressure and temperature: I. Thermal expansion of lawsonite, zoisite, clinozoisite, and diaspore. American Mineralogist, 81, 335–340.Google Scholar

  • Petříček, V., Dušek, M., and Palatinus, L. (2014) Crystallographic Computing system JANA2006: General features. Zeitschrift für Kristallographie-Crystalline Materials, 229, 345–352.Google Scholar

  • Rao, K.V.K., Naidu, S.V.N., and Murthy, K.S. (1968) Precision lattice parameters and thermal expansion of calcite. Journal of Physics and Chemistry of Solids, 29, 245–248.Google Scholar

  • Rebuffi, L., Plaisier, J.R., Abdellatief, M., Lausi, A., and Scardi, P. (2014) MCX: A synchrotron radiation beamline for X-ray diffraction line profile analysis. Zeitschrift für Anorganische und Allgemeine Chemie, 640, 3100–3106.Google Scholar

  • Redfern, S.A.T. (2000) Structural variations in carbonates. Reviews in Mineralogy and Geochemistry, 41, 289–308.Google Scholar

  • Redfern, S.A.T., and Angel, R.J. (1999) High-pressure behaviour and equation of state of calcite, CaCO3. Contributions to Mineralogy and Petrology, 134, 102–106.Google Scholar

  • Redfern, S.A.T., Salji, E., and Navtrotsky, A. (1989) High-temperature enthalpy at the orientational order/disorder transition in calcite: Implications of the calcite/aragonite phase equilibrium. Contributions to Mineralogy and Petrology, 101, 479–484.Google Scholar

  • Reeder, R.J. (1983) Crystal chemistry of the rhombohedral carbonates. Reviews in Mineralogy, 11, 147.Google Scholar

  • Reeder, R.J., and Dollase, W.A. (1989) Structural variation in the dolomite-ankerite solid-solution series; an X-ray, Mössbauer, and TEM study. American Mineralogist, 74, 1159–1167.Google Scholar

  • Riello, P., Lausi, A., MacLeod, J., Plaisier, J.R., Zerauschek, G., and Fornasiero, P. (2013) In situ reaction furnace for real-time XRD studies. Journal of Synchrotron Radiation, 20, 194–196.Google Scholar

  • Ross, N. (1997) The equation of state and high-pressure behavior of magnesite. American Mineralogist, 82, 682–688.Google Scholar

  • Ross, N.L., and Reeder, R.J. (1992) High-pressure structural study of dolomite and ankerite. American Mineralogist, 77, 412–421.Google Scholar

  • Santillán, J., Williams, Q., and Knittle, E. (2003) Dolomite-II: A high-pressure polymorph of CaMg(CO3)2. Geophysical Research Letters, 30, 1054.Google Scholar

  • Shim, S.H., and Duffy, T.S. (2000) Constraints on the P-V-T equation of state of MgSiO3 perovskite. American Mineralogist, 85, 354–363.Google Scholar

  • Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210–213.Google Scholar

  • Zucchini, A., Comodi, P., Nazzareni, S., and Hanfland, M. (2014) The effect of cation ordering and temperature on the high-pressure behaviour of dolomite. Physics and Chemistry of Minerals, 41, 783–793.Google Scholar

About the article


Received: 2015-06-10

Accepted: 2016-02-05

Published Online: 2016-06-03

Published in Print: 2016-06-01


Citation Information: American Mineralogist, Volume 101, Issue 6, Pages 1423–1430, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5458.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in