Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 101, Issue 6

Issues

Zircon saturation and Zr diffusion in rhyolitic melts, and zircon growth geospeedometer

Youxue Zhang
  • Corresponding author
  • Department of Earth and Environmental Sciences, the University of Michigan, Ann Arbor, Michigan 48109, U.S.A
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhengjiu Xu
  • Department of Earth and Environmental Sciences, the University of Michigan, Ann Arbor, Michigan 48109, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-03 | DOI: https://doi.org/10.2138/am-2016-5462

Abstract

Zircon is a ubiquitous accessory mineral in silicic igneous rocks. We have carried out new zircon dissolution experiments to refine our understanding of Zr diffusion and zircon solubility in several rhyolitic melts. Zr diffusivity depends strongly on temperature and H2O content, and weakly on pressure and anhydrous melt composition. The diffusion data for each individual melt follows the Arrhenius relation. The dependence of Zr diffusivity on temperature, pressure, and melt composition (including H2O content) is modeled for different rhyolitic melts in this study and for the combined literature and our data. Our data on Zr concentration at zircon saturation in silicic melts show strong dependence on temperature and weak dependence on pressure and melt composition, and are somewhat off the trend based on existing zircon solubility models. The dissolution or growth rate of a freely falling zircon crystal in a specific hydrous rhyolitic melt is modeled. The controlling factors are mostly the temperature and Zr concentration in the melt. Typical zircon growth rate in wet rhyolitic melt is 0.01 to 1.0 μm/yr. The size of zircon crystals can be used to place limit on the cooling rate of its hosting magma. The presence of large indigenous zircon crystals in Bishop Tuff requires slow cooling of the Bishop Tuff magma chamber.

Key words: Zirconium diffusion; Zr diffusivity; zircon solubility; zircon growth; zircon geospeedometer; cooling rate; Bishop Tuff; Invited Centennial article

Special collection information can be found at http://www.minsocam.org/MSA/AmMin/special-collections.html.

References Cited

  • Baker, D.R., and Watson, E.B. (1988) Diffusion of major and trace elements in compositionally complex Cl- and F-bearing silicate melts. Journal of Non-Crystalline Solids, 102, 62–70.Google Scholar

  • Baker, D.R., Conte, A.M., Freda, C., and Ottolini, L. (2002) The effect of halogens on Zr diffusion and zircon dissolution in hydrous metaluminous granitic melts. Contributions to Mineralogy and Petrology, 142, 666–678.Google Scholar

  • Behrens, H., and Hahn, M. (2009) Trace element diffusion and viscous flow in potassium-rich trachytic and phonolitic melts. Chemical Geology, 259, 63–77.Google Scholar

  • Bindeman, I.N. (2003) Crystal sizes in evolving silicic magma chambers. Geology, 31, 367–370.Google Scholar

  • Boehnke, P., Watson, E.B., Trail, D., Harrison, T.M., and Schmitt, A.K. (2013) Zircon saturation re-visited. Chemical Geology, 351, 324–334.Google Scholar

  • Chen, Y., and Zhang, Y. (2008) Olivine dissolution in basaltic melt. Geochimica et Cosmochimica Acta, 72, 4756–4777.Google Scholar

  • Chen, Y., and Zhang, Y. (2009) Clinopyroxene dissolution in basaltic melt. Geochimica et Cosmochimica Acta, 73, 5730–5747.Google Scholar

  • Crowley, J.L., Schoene, B., and Bowring, S.A. (2007) U-Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology, 35, 1123–1126.Google Scholar

  • Dickinson, J.E., and Hess, P.C. (1982) Zircon saturation in lunar basalts and granites. Earth and Planetary Science Letters, 57, 336–344.Google Scholar

  • Dingwell, D.B. (1990) Effects of structural relaxation on cationic tracer diffusion in silicate melts. Chemical Geology, 82, 209–216.Google Scholar

  • Dobson, P.F., Epstein, S., and Stolper, E.M. (1989) Hydrogen isotope fractionation between coexisting vapor and silicate glasses and melts at low pressure. Geochimica et Cosmochimica Acta, 53, 2723–2730.Google Scholar

  • Ellison, A.J., and Hess, P.C. (1986) Solution behavior of +4 cations in high silica melts: Petrologic and geochemical implications. Contributions to Mineralogy and Petrology, 94, 343–351.Google Scholar

  • Eyring, H. (1936) Viscosity, plasticity, and diffusion as examples of absolute reaction rates. Journal of Chemical Physics, 4, 283–291.Google Scholar

  • Ganguly, J., Bhattacharya, R.N., and Chakraborty, S. (1988) Convolution effect in the determination of compositional profiles and diffusion coefficients by microprobe step scans. American Mineralogist, 73, 901–909.Google Scholar

  • Gualda, G.A.R., Ghiorso, M.S., Lemons, R.V., and Carley, T.L. (2012) Rhyolite-MELTS: a modified calibration of MEOLS optimized for silica-rich, fluid-bearing magmatic systems. Journal of Petrology, 53, 875–890.Google Scholar

  • Hanchar, J.M., and Hoskin, P.W.O., Eds. (2003) Zircon. Reviews in Mineralogy and Geochemistry, 53, 1–500.Google Scholar

  • Hanchar, J.M., and Watson, E.B. (2003) Zircon saturation thermometry. Reviews in Mineralogy and Geochemistry, 53, 89–112.Google Scholar

  • Harrison, T.M., and Watson, E.B. (1983) Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contributions to Mineralogy and Petrology, 84, 66–72.Google Scholar

  • Hildreth, W. (1979) The Bishop Tuff: Evidence for the origin of compositional zonation in silicic magma chambers. Geological Society of America Special Paper, 180, 43–73.Google Scholar

  • Hildreth, W., and Wilson, C.J. (2007) Compositional zoning of the Bishop Tuff. Journal of Petrology, 48, 951–999.Google Scholar

  • Hui, H., and Zhang, Y. (2007) Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochimica et Cosmochimica Acta, 71, 403–416.Google Scholar

  • Hui, H., Zhang, Y., Xu, Z., and Behrens, H. (2008) Pressure dependence of the speciation of dissolved water in rhyolitic melts. Geochimica et Cosmochimica Acta, 72, 3229–3240.Google Scholar

  • Hui, H., Zhang, Y., Xu, Z., Del Gaudio, P., and Behrens, H. (2009) Pressure dependence of viscosity of rhyolitic melts. Geochimica et Cosmochimica Acta, 73, 3680–3693.Google Scholar

  • Keppler, H. (1993) Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. Contributions to Mineralogy and Petrology, 114, 479–488.Google Scholar

  • Kerr, R.C. (1995) Convective crystal dissolution. Contributions to Mineralogy and Petrology, 121, 237–246.Google Scholar

  • Koepke, J., and Behrens, H. (2001) Trace element diffusion in andesitic melts: an application of synchrontron X-ray fluorescence analysis. Geochimica et Cosmochimica Acta, 65, 1481–1498.Google Scholar

  • Kushiro, I. (1980) Viscosity, density, and structure of silicate melts at high pressures, and their petrological applications. In R.B.Hargraves, Ed., Physics of Magmatic Processes, p. 93–120. Princeton University Press, New Jersey.Google Scholar

  • LaTourrette, T., Wasserburg, G.J., and Fahey, A.J. (1996) Self diffusion of Mg, Ca, Ba, Nd, Yb, Ti, Zr, and U in haplobasaltic melt. Geochimica et Cosmochimica Acta, 60, 1329–1340.Google Scholar

  • Liu, Y., and Zhang, Y. (2000) Bubble growth in rhyolitic melt. Earth and Planetary Science Letters, 181, 251–264.Google Scholar

  • Liu, Y., Zhang, Y., and Behrens, H. (2005) Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed H2O-CO2 solubility in rhyolitic melts. Journal of Volcanology and Geothermal Research, 143, 219–235.Google Scholar

  • Lu, F., Anderson, A.T., and Davis, A.M. (1992) Melt inclusions and crystal-liquid separation in rhyolitic magma of the Bishop Tuff. Contributions to Mineralogy and Petrology, 110, 113–120.Google Scholar

  • Lundstrom, C.C. (2003) An experimental investigation of the diffusive infiltration of alkalis into partially molten peridotite: implications for mantle melting processes. Geochemistry Geophysics Geosystems, 4, doi:.CrossrefGoogle Scholar

  • Mungall, J.E. (2002) Empirical models relating viscosity and tracer diffusion in magmatic silicate melts. Geochimica et Cosmochimica Acta, 66, 125–143.Google Scholar

  • Mungall, J.E., and Dingwell, D.B. (1997) Actinide diffusion in a haplogranitic melt: Effects of pressure, water content, and pressure. Geochimica et Cosmochimica Acta, 61, 2237–2246.Google Scholar

  • Mungall, J.E., Dingwell, D.B., and Chaussidon, M. (1999) Chemical diffusivities of 18 trace elements in granitoid melts. Geochimica et Cosmochimica Acta, 63, 2599–2610.Google Scholar

  • Nakamura, E., and Kushiro, I. (1998) Trace element diffusion in jadeite and diopside melts at high pressures and its geochemical implication. Geochimica et Cosmochimica Acta, 62, 3151–3160.Google Scholar

  • Newman, S., Stolper, E.M., and Epstein, S. (1986) Measurement of water in rhyolitic glasses: calibration of an infrared spectroscopic technique. American Mineralogist, 71, 1527–1541.Google Scholar

  • Newman, S., Epstein, S., and Stolper, E.M. (1988) Water, carbon dioxide, and hydrogen isotopes in glasses from the ca. 1340 A. D. eruption of the Mono Craters, California: Constraints on degassing phenomena and initial volatile content. Journal of Volcanology and Geothermal Research, 35, 75–96.Google Scholar

  • Ni, H., and Zhang, Y. (2008) H2O diffusion models in rhyolitic melt with new high pressure data. Chemical Geology, 250, 68–78.Google Scholar

  • Ni, H., Behrens, H., and Zhang, Y. (2009) Water diffusion in dacitic melt. Geochimica et Cosmochimica Acta, 73, 3642–3655.Google Scholar

  • Reid, M.R., and Coath, C.D. (2000) In situ U-Pb ages of zircons from the Bishop Tuff: no evidence for long crystal residence times. Geology, 28, 443–446.Google Scholar

  • Robie, R.A., and Hemingway, B.S. (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at high temperatures, 461 p. U.S. Geological Survey Bulletin 2131.Google Scholar

  • Rubatto, D., and Hermann, J. (2007) Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology, 241, 38–61.Google Scholar

  • Sieh, K., and Bursik, M. (1986) Most recent eruptions of the Mono Craters, eastern central California. Journal of Geophysical Research, 91, 12539–12571.Google Scholar

  • Simon, J.I., Renne, P.R., and Mundil, R. (2008) Implications of pre-eruptive magmatic histories of zircons for U-Pb geochronology of silicic extrusions. Earth and Planetary Science Letters, 266, 182–194.Google Scholar

  • Skirius, C.M., Peterson, J.W., and Anderson, A.T. (1990) Homogenizing rhyolitic glass inclusions from the Bishop Tuff. American Mineralogist, 75, 1381–1398.Google Scholar

  • Valley, J.W., Lackey, J.S., Cavosie, A.J., Clechenko, C.C., Spicuzza, M.J., Basei, M.A.S., Bindeman, I.N., Ferreira, V.P., Sial, A.N., King, E.M., and others. (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contributions to Mineralogy and Petrology, 150, 561–580.Google Scholar

  • Wallace, P.J., Dufek, J., Anderson, A.T., and Zhang, Y. (2003) Cooling rates of Plinian-fall and pyroclastic-flow deposits in the Bishop Tuff: Inferences from water speciation in quartz-hosted glass inclusions. Bulletin of Volcanology, 65, 105–123.Google Scholar

  • Wang, H., Xu, Z., Behrens, H., and Zhang, Y. (2009) Water diffusion in Mount Changbai peralkaline rhyolitic melt. Contributions to Mineralogy and Petrology, 158, 471–484.Google Scholar

  • Watson, E.B. (1979) Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contributions to Mineralogy and Petrology, 70, 407–419.Google Scholar

  • Watson, E.B., and Harrison, T.M. (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295–304.Google Scholar

  • Xu, Z., and Zhang, Y. (2002) Quench rates in water, air and liquid nitrogen, and inference of temperature in volcanic eruption columns. Earth and Planetary Science Letters, 200, 315–330.Google Scholar

  • Yu, Y., Zhang, Y., and Yang, Y. (2015) Diffusion of SiO2 in rhyolitic melt. AGU Fall Meeting abstract V41B-3070.Google Scholar

  • Yu, Y., Zhang, Y., Chen, Y., and Xu, Z. (2016) Kinetics of anorthite dissolution in basaltic melt. Geochimica et Cosmochimica Acta, 179, 257–274.Google Scholar

  • Zhang, Y. (1994) Reaction kinetics, geospeedometry, and relaxation theory. Earth and Planetary Science Letters, 122, 373–391.Google Scholar

  • Zhang, Y. (1999) H2O in rhyolitic glasses and melts: Measurement, speciation, solubility, and diffusion. Reviews of Geophysics, 37, 493–516.Google Scholar

  • Zhang, Y. (2005) Fate of rising CO2 droplets in seawater. Environmental Science and Technology, 39, 7719–7724.Google Scholar

  • Zhang, Y. (2008) Geochemical Kinetics, 656 p. Princeton University Press, New Jersey.Google Scholar

  • Zhang, Y. (2010) Diffusion in minerals and melts: theoretical background. Reviews in Mineralogy and Geochemistry, 72, 5–59.Google Scholar

  • Zhang, Y. (2013) Kinetics and dynamics of mass-transfer-controlled mineral and bubble dissolution or growth: A review. European Journal of Mineralogy, 25, 255–266.Google Scholar

  • Zhang, Y. (2015) Toward a quantitative model for the formation of gravitational magmatic sulfide deposits. Chemical Geology, 391, 56–73.Google Scholar

  • Zhang, Y., and Ni, H. (2010) Diffusion of H, C, and O components in silicate melts. Reviews in Mineralogy and Geochemistry, 72, 171–225.Google Scholar

  • Zhang, Y., and Xu, Z. (2003) Kinetics of convective crystal dissolution and melting, with applications to methane hydrate dissolution and dissociation in seawater. Earth and Planetary Science Letters, 213, 133–148.Google Scholar

  • Zhang, Y. (2008) “Fizzics” of bubble growth in beer and champagne. Elements, 4, 47–49.Google Scholar

  • Zhang, Y., Walker, D., and Lesher, C.E. (1989) Diffusive crystal dissolution. Contributions to Mineralogy and Petrology, 102, 492–513.Google Scholar

  • Zhang, Y., Belcher, R., Ihinger, P.D., Wang, L., Xu, Z., and Newman, S. (1997) New calibration of infrared measurement of water in rhyolitic glasses. Geochimica et Cosmochimica Acta, 61, 3089–3100.Google Scholar

  • Zhang, Y., Ni, H., and Chen, Y. (2010) Diffusion data in silicate melts. Reviews in Mineralogy and Geochemistry, 72, 311–408.Google Scholar

  • Zhao, D., Zhang, Y., and Essene, E.J. (2015) Electron probe microanalysis and microscopy: principles and applications in characterization of mineral inclusions in chromite from diamond deposit. Ore Geology Review, 65, 733–748.Google Scholar

About the article

Received: 2015-06-12

Accepted: 2015-10-18

Published Online: 2016-06-03

Published in Print: 2016-06-01


Citation Information: American Mineralogist, Volume 101, Issue 6, Pages 1252–1267, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5462.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in