Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 101, Issue 6


The origin of extensive Neoarchean high-silica batholiths and the nature of intrusive complements to silicic ignimbrites: Insights from the Wyoming batholith, U.S.A.

Davin A. Bagdonas / Carol D. Frost / C. Mark Fanning
  • Corresponding author
  • Research School of Earth Sciences, Australian National University, ACT 0200, Canberra, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-03 | DOI: https://doi.org/10.2138/am-2016-5512


Extensive intrusions composed entirely of biotite granite are common in Neoarchean cratons. These granites, which have high silica and potassium contents, are not associated with intermediate and mafic phases. One such Neoarchean granite batholith, herein named the Wyoming batholith, extends more than 200 km across central Wyoming in the Granite and the Laramie Mountains. From field characterization, petrology, geochemistry, and Nd isotopic data we establish that the magnesian Wyoming batholith exhibits continental arc chemical and isotopic signatures. It is best interpreted as a large, upper crustal silicic batholith that likely formed when the subducting oceanic plate steepened or foundered, bringing mantle heat and mass to the base of the crust. Similar Cenozoic settings, such as the Altiplano-Puna plateau of the Andes and the volcanic provinces of the western United States, host large volumes of silicic ignimbrite. The magma chambers supplying these eruptions are inferred to be silicic, but the structural, petrologic, and geochemical details are unknown because the batholiths are not exposed. We suggest that the Wyoming batholith represents an analog for the plutonic complex underlying these ignimbrite systems, and provides an opportunity to examine the shallow magma chamber directly. Our work establishes that, aside from more leucocratic margins, the sill-like magma chamber is petrologically and chemically homogeneous, consistent with effective mixing by vertical convection. Nd isotopic variations across the batholith indicate that horizontal homogenization is incomplete, preserving information about the feeder system to the batholith and variations in magma sources. The late Archean Earth may present optimal conditions for the formation of extensive granite batholiths like the Wyoming batholith. By this time the majority of the planet’s continental crust had formed, providing the environment in which differentiation, distillation, and assimilation could occur. Moreover, the Neoarchean Earth’s relatively high radioactive heat production provided the power to drive these processes.

Key words: Granite; ignimbrite; continental arc; batholith; Archean

Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.


  • Ague, J.J., and Brimhall, G.H. (1988) Magmatic arc asymmetry and distribution of anomalous plutonic belts in the batholiths of California: Effects of assimilation, crustal thickness, and depth of crystallization. Geological Society of America Bulletin, 100, 912–927.Google Scholar

  • Bachmann, O., and Bergantz, G.W. (2008) Rhyolites and their source mushes across tectonic settings. Journal of Petrology, 49, 2277–2285.Google Scholar

  • Bachmann, O., Dungan, M.A., and Lipman, P.W. (2002) The Fish Canyon magma body, San Juan volcanic field, Colorado: Rejuvenation and eruption of an upper-crustal batholith. Journal of Petrology, 43, 1469–1503.Google Scholar

  • Bachmann, O., Deering, C.D., Lipman, P.W., and Plummer, C. (2014) Building zoned ignimbrites by recycling silicic cumulates: insight from the 1,000 km3 Carpenter Ridge Tuff, CO. Contributions to Mineralogy and Petrology, 167, 1025.Google Scholar

  • Bagdonas, D.A. (2014) Petrogenesis of the Neoarchean Wyoming batholith, central Wyoming. M.S. thesis, University of Wyoming, Laramie, 120 pp.Google Scholar

  • Bateman, P.C., and Chappell, B.W. (1979) Crystallization, fractionation and solidification of the Tuolumne Intrusive series, Yosemite National Park, California. Geological Society of American Bulletin, 90, 465–482.Google Scholar

  • Best, M.G., Barr, D.L., Christiansen, E.H., Gromme, C.S., Deino, A.L., and Tingey, D.G. (2009) The Great Basin altiplano during the middle Cenozoic ignimbrite flareup: Insights from volcanic rocks. International Geology Review, 51, 589–633.Google Scholar

  • Best, M.G., Christiansen, E.H., and Gromme, S. (2013a) Introduction: the 36–18 Ma southern Great Basin, USA, ignimbrite province and flareup: swarms of subduction-related supervolcanoes. Geosphere, 9, 260–274.Google Scholar

  • Best, M.G., Christiansen, E.H., Deino, A.L., Gromme, S., Hart., G.L., and Tingey, D.G. (2013b) The 36–18 Ma Indian Peak-Caliente ignimbrite field and calderas, southeastern Great Basin, USA: Multicyclic super-eruptions. Geosphere, 9, 864–950.Google Scholar

  • Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., and Foudoulis, C. (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology, 200, 155–170.Google Scholar

  • Bowers, N.E., and Chamberlain, K.R. (2006) Precambrian history of the Eastern Ferris Mountains and Bear Mountain, central Wyoming province. Canadian Journal of Earth Sciences, 43, 1467–1487.Google Scholar

  • Cassidy, K.F., Champion, D.C., and Smithies, R.H. (2006) Origin of Archean late potassic granites: Evidence from the Yilgarn and Pilbara cratons. Geochimica et Cosmochimica Acta, 70, 18S, A88.CrossrefGoogle Scholar

  • Chamberlain, K.R., Frost, C.D., and Frost, B.R. (2003) Early Archean to Mesoproterozoic evolution of the Wyoming province: Archean origins to modern lithospheric architecture. Canadian Journal of Earth Sciences, 40, 1357–1374.Google Scholar

  • Charlier, B.L.A., Bachmann, O., Davidson, J.P., Dungan, M.A., and Morgan, D.J. (2007) The upper crustal evolution of a large silicic magma body; evidence from crystal-scale Rb-Sr isotopic heterogeneities in the Fish Canyon magmatic system, Colorado. Journal of Petrology, 48, 1875–1894.Google Scholar

  • Christiansen, E.H. (2005) Contrasting processes in silicic magma chambers: Evidence from very large volume ignimbrites. Geological Magazine, 142, 669–681.Google Scholar

  • Christiansen, E.H., and Best, M.G. (2014) Constraints on the origin of subduction-related ignimbrite flareups from source volume calculations; the southern Great Basin ignimbrite province. Geological Society of America Abstracts with Programs, 46, 374.Google Scholar

  • Condie, K.C. (1969) Petrology and geochemistry of the Laramie batholith and related metamorphic rocks of Precambrian age, eastern Wyoming. Geological Society of America Bulletin, 80, 57–82.Google Scholar

  • Davis, W.J., and Bleeker, W. (1999) Timing of plutonism, deformation, and metamorphism in the Yellowknife Domain, Slave Province, Canada. Canadian Journal of Earth Sciences, 36, 1169–1187.Google Scholar

  • Davis, W.J., Fryer, B.J., and King, J.E. (1994) Geochemistry and evolution of Late Archean plutonism and its significance to the tectonic development of the Slave craton. Precambrian Research, 67, 207–241.Google Scholar

  • De Silva, S.L., and Gosnold, W.D. (1995) Episodic construction of batholiths: insights from the spatiotemporal development of an ignimbrite flare-up. Journal of Volcanology and Geothermal Research, 167, 320–335.Google Scholar

  • De Silva, S.L., and Wolff, J.A. (2007) Zoned magma chamber; the influence of magma chamber geometry on sidewall convective fractionation. Journal of Volcanology and Geothermal Research, 65, 111–118.Google Scholar

  • De Silva, S.L., Zandt, G., Trumbull, R., Viramonte, J.G., Salas, G., and Jimenez, N. (2006) Large ignimbrite eruptions and volcano-tectonic depressions in the Central Andes: A thermomechanical perspective. In C. Troise, G. de Natale, and C.R.J. Kilburn, Eds., Mechanisms of Activity and Unrest at Large Caldera, p. 47–63. Geological Society of London Special Publications.Google Scholar

  • DePaolo, D.J., Perry, F.V., and Baldridge, W.S. (1992) Crustal versus mantle sources of granitic magmas: A two-parameter model based on Nd isotopic studies. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83, 439–446.Google Scholar

  • Folkes, C.B., De Silva, S.L., Wright, H.M., and Cas, R.A.F. (2011) Geochemical homogeneity of a long-lived, large silicic system; evidence from the Cerro Galán caldera, NW Argentina. Bulletin of Volcanology, 73, 1455–1486.Google Scholar

  • Frost, C.D., and Fanning, C.M. (2006) Archean geochronological framework of the Bighorn Mountains, Wyoming. Canadian Journal of Earth Sciences, 43, 1399–1418.Google Scholar

  • Frost, B.R., and Frost, C.D. (2008) A geochemical classification for feldspathic igneous rocks. Journal of Petrology, 49, 1955–1969.Google Scholar

  • ——— (2014) Essentials of Igneous and Metamorphic Petrology, 303 p. Cambridge University Press, U.K.Google Scholar

  • Frost, C.D., Frost, B.R., Chamberlain, K.R., and Hulsebosch, T.P. (1998) The Late Archean history of the Wyoming province as recorded by granite plutonism in the Wind River Range, Wyoming. Precambrian Research, 89, 145–173.Google Scholar

  • Frost, B.R., Frost, C.D., Hulsebosch, T.P., and Swapp, S.M. (2000) Origin of the charnockites of the Louis Lake Batholith, Wind River Range, Wyoming. Journal of Petrology, 41, 1759–1776.Google Scholar

  • Frost, B.R., Arculus, R.J., Barnes, C.G., Collins, W.J., Ellis, D.J., and Frost, C.D. (2001) A geochemical classification of granitic rocks. Journal of Petrology, 42, 2033–2048.Google Scholar

  • Frost, C.D., Fruchey, B.L., Chamberlain, K.R., Frost, B.R. (2006) Archean crustal growth by lateral accretion of juvenile supracrustal belts in the south-central Wyoming province. Canadian Journal of Earth Sciences, 43, 1533–1555.Google Scholar

  • Frost, C.D., Frost, B.R., McLaughlin, J.F., Swapp, S.M., Fanning, C.M. (2015) Formation of Paleoarchean Continental Crust in the central Wyoming Province. Geological Society of America Abstracts with Programs, 47(7), 721.Google Scholar

  • Frost, C.D., Frost, B.R., and Beard, J.S. (2016) On silica-rich granitoids and their eruptive equivalents. American Mineralogist, 101, 1268–1284.Google Scholar

  • Fruchey, B.L. (2002) Archean supracrustal sequences of contrasting origin: The Archean history of the Barlow Gap area, northern Granite Mountains, Wyoming, 178 p. M.S. thesis, University of Wyoming, Laramie.Google Scholar

  • Hawkesworth, C.J., Dhuime, B., Pietranik, A.B., Cawood, P.A., Kemp, A.I.S., and Storey, C.D. (2010) The generation and evolution of the continental crust. Journal of the Geological Society of London, 167, 229–248.Google Scholar

  • Jaguin, J., Gapais, D., Poujol, M., Boulvais, P., and Moyen, J.-F. (2012) The Murchison greenstone belt (South Africa): a general tectonic framework. South African Journal of Geology, 115, 65–76.Google Scholar

  • Kay, S.M., Mpodozis, C., and Coira, B. (1999) Neogene magmatism, tectonism, and mineral deposits of the central Andes (22 to 33 S latitude). In B.J. Skinner and R. Holland, Eds., Geology and Ore Deposits of the Central Andes. Society of Economic Geologists Special Publications, 27–59.Google Scholar

  • Kay, S.M., Coira, B.L., Caffe, P.J., and Chen, C.–H. (2010) Regional chemical diversity, crustal andmantle sources and evolution of central Andean Puna plateau ignimbrites. Journal of Volcanology and Geothermal Research, 198, 81–111.Google Scholar

  • Langstaff, G.D. (1995) Archean geology of the Granite Mountains, Wyoming. Ph.D. dissertation, Colorado School of Mines, Golden.Google Scholar

  • Laurent, O., Martin, H., Moyen, J.F., and Doucelance, R. (2014) The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos, 205, 208–235.Google Scholar

  • Lee, C-T.A., and Morton, D.M. (2015) High silica granites: terminal porosity and crystal settling in shallow magma chambers. Earth and Planetary Science Letters, 409, 23–31.Google Scholar

  • Lee, C-T.A., Morton, D.M., Kistler, R.W., and Baird, A.K. (2007) Petrology and tectonics of Phanerozoic continent formation: from island arcs to accretion and continental arc magmatism. Earth and Planetary Science Letters, 263, 370–387.Google Scholar

  • Lindsay, J.M., De Silva, S., Trumbull, R., Emmermann, R., and Wemmer, K. (2001) La Pacana Caldera, N. Chile; a re-evaluation of the stratigraphy and volcanology of one of the world’s largest resurgent calderas. Journal of Volcanology and Geothermal Research, 106, 145–173.Google Scholar

  • Lipman, P.W. (2007) Incremental assembly and prolonged consolidation of Cordilleran magma chambers: evidence from the Southern Rocky Mountain volcanic field. Geosphere, 3, 42–70.Google Scholar

  • Lipman, P.W., and Bachmann, O. (2015) Ignimbrites to batholiths: integrating perspectives from geological, geophysical, and geochronological data. Geosphere, 11, 705–743.Google Scholar

  • Love, J.D. (1970) Cenozoic geology of the Granite Mountains area, central Wyoming. U.S. Geological Survey Professional Paper 495-C, 154 p.Google Scholar

  • Ludwig, K.R. (2001) SQUID 1.02, A User’s Manual. Berkeley Geochronology Center Special Publication, California.Google Scholar

  • ——— (2003) User’s Manual for Isoplot/Ex, Version 3.0, A Geochronology Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley, California.Google Scholar

  • Ludwig, K.R., and Stuckless, J.S. (1978) Uranium-lead isotope systematics and apparent ages of zircons and other minerals in Precambrian granitic rocks, Granite Mountains, Wyoming. Contributions to Mineralogy and Petrology, 65, 243–254.Google Scholar

  • Maughan, L.L., Christiansen, E.H., Best, M.G., Gromme, C.S., Deino, A.L., and Tingey, D.G. (2002) The Oligocene Lund Tuff, Great Basin, USA; a very large volume monotonous intermediate. Journal of Volcanology and Geothermal Research, 113, 129–157.Google Scholar

  • McLaughlin, J.F., Bagdonas, D., Frost, C.D., and Frost, B.R. (2013) Geologic Map of the Stampede Meadows quadrangle, Fremont County, Wyoming. Wyoming State Geological Survey Bedrock Geologic Map, 1:24,000 scale, 1 sheet.Google Scholar

  • Meredith, M.T. (2005) A Late Archean tectonic boundary exposed at Tin Cup Mountain, Granite Mountains, Wyoming. M.S. thesis, University of Wyoming, Laramie.Google Scholar

  • Mogk, D.W., Mueller, P.A., and Wooden, J.L. (1988) Tectonic aspects of Archean continental development in the North Snowy Block, Beartooth Mountains, Montana. Journal of Geology, 96, 125–141.Google Scholar

  • ——— (1992) The significance of Archean terrane boundaries: Evidence from the northern Wyoming province. Precambrian Research, 55, 155–168.Google Scholar

  • Moyen, J.-F. (2011) The composite Archean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos, 123, 21–36.Google Scholar

  • Mueller, P.A., and Frost, C.D. (2006) The Wyoming province: a distinctive Archean craton in Laurentian North America. Canadian Journal of Earth Sciences, 43, 1391–1397.Google Scholar

  • Mueller, P.A., Shuster, R., Wooden, J., Erslev, E., and Bowes, D. (1993) Age and composition of Archean crystalline rocks from the southern Madison Range: Implications for crustal evolution in the Wyoming craton. Geological Society of America Bulletin, 105, 437–446.Google Scholar

  • Mueller, P.A., Wooden, J.L., Mogk, D.W., Nutman, A.P., and Williams, I.S. (1996) Extended history of a 3.5 Ga trondhjemitic gneiss, Wyoming province, USA: evidence from U-Pb systematics in zircon. Precambrian Research, 78, 41–52.Google Scholar

  • Mueller, P., Wooden, J., Nutman, A., and Mogk, D. (1998) Early Archean crust in the northern Wyoming province: evidence from U-Pb systematics in detrital zircons. Precambrian Research, 91, 295–307.Google Scholar

  • Mueller, P., Wooden, J., Heatherington, A., Burger, H., Mogk, D., and D’Arcy, K. (2004) Age and evolution of the Precambrian crust of the Tobacco Root Mountains. In J.B. Brady, H.R. Burger, J.T. Cheney, and T.A. Harms, Eds., Precambrian Geology of the Tobacco Root Mountains, Montana, 377, p. 181–202. Geological Society of America Special Paper, Boulder, Colorado.Google Scholar

  • Pearce, J.A., Harris, N.B.W., and Tindle, A.G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956–983.Google Scholar

  • Peterman, Z.E., and Hildreth, R.A. (1978) Reconnaissance geology and geochronology of the Precambrian of the Granite Mountains, Wyoming. U.S. Geological Survey Professional Paper, 1055, 22 p.Google Scholar

  • Putirka, K.D., Canchola, J., Rash, J., Smith, O., Torrez, G., Paterson, S.R., and Ducea, M.H. (2014) Pluton assembly and the genesis of granitic magmas: insights from the GIC pluton in cross section, Sierra Nevada Batholith, California. American Mineralogist, 99, 1284–1303.Google Scholar

  • Robbins, S.L., and Grow, J.A. (1992) Implications of Gravity and seismic reflection data for Laramide mountain ranges and basins of Wyoming and southern Montana. U.S. Geological Survey Bulletin 2012-E, 20 p.Google Scholar

  • Ross, K.T., Christiansen, E.H., Best, M.G., and Dorais, M.J. (2015) Cooling before super-eruption: no evidence of rejuvenation in a crystal-rich dacite magma body, southern Great Basin ignimbrite province, Utah and Nevada. American Geophysical Union Fall Meeting, abstract V13B-3125.Google Scholar

  • Souders, A.K., and Frost, C.D. (2006) In suspect terrane? Provenance of the Late Archean Phantom Lake Metamorphic Suite, Sierra Madre, Wyoming. Canadian Journal of Earth Sciences, 43, 1557–1577.Google Scholar

  • Stuckless, J.S. (1989) Petrogenesis of Two Contrasting Late Archean Granitoids, Wind River Range, Wyoming. U.S. Geological Survey Professional Paper, 1491, 38 p.Google Scholar

  • Stuckless, J.S., and Miesch, A.T. (1981) Petrogenetic Modeling of a Potential Uranium Source Rock, Granite Mountains, Wyoming. U.S. Geological Survey Professional Paper, 1224, 34 p.Google Scholar

  • Stuckless, J.S., and Peterman, Z.E. (1977) A summary of the geology, geochronology, and geochemistry of Archean rocks of the Granite Mountains, Wyoming. Wyoming Geological Association, Earth Science Bulletin, 10.3, 3–20.Google Scholar

  • Stuckless, J.S., Bunker, C.M., Busg, C.A., Doering, W.P., and Scott, J.H. (1977) Geochemical and petrologic studies of a uraniferous granite from the Granite Mountains, Wyoming. U.S. Geological Survey Journal of Research, 5, 61–81.Google Scholar

  • Stuckless, J.S., Hedge, C.E., Worl, R.G., Simmons, K.R., Nkomo, I.T., and Wenner, D.R. (1985) Isotopic studies of the late Archean plutonic rocks of the Wind River Range, Wyoming. Geological Society of America Bulletin, 96, 850–860.Google Scholar

  • Sutherland, W.M., and Luhr, S.C. (2011) Preliminary bedrock geologic map of the Farson 30' F 60' Quadrangle, Sweetwater, Sublette, and Fremont Counties, Wyoming. Wyoming State Geological Survey Open File Report WSGS-2011-OFR-06, scale 1:100,000, 1 sheet.Google Scholar

  • Wall, E.N. (2004) Petrologic, geochemical and isotopic constraints on the origin of 2.6 Ga post-tectonic granitoids of the central Wyoming province. M.S. thesis, University of Wyoming, Laramie.Google Scholar

  • Ward, K.M., Zandt, G., Beck, S.L., and Christiansen, D.H. (2014) Seismic imaging of the magmatic underpinnings beneath the Altiplano-Puna volcanic complex from the joint inversion of surface wave dispersion and receiver functions. Earth and Planetary Science Letters, 404, 43–53.Google Scholar

  • Williams, I.S. (1998) U-Th-Pb geochronology by ion microprobe. Reviews in Economic Geology, 7, 1–35.Google Scholar

About the article

Received: 2015-07-27

Accepted: 2016-02-05

Published Online: 2016-06-03

Published in Print: 2016-06-01

Citation Information: American Mineralogist, Volume 101, Issue 6, Pages 1321–1331, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5512.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in