Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2017: 2.645

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 101, Issue 6

Issues

From the Hadean to the Himalaya: 4.4 Ga of felsic terrestrial magmatism

T. Mark Harrison
  • Corresponding author
  • Department of Earth, Planetary and Space Sciences, University of California, Los Angles, Los Angeles, California 90095, U.S.A.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Matthew M. Wielicki
  • Department of Earth, Planetary and Space Sciences, University of California, Los Angles, Los Angeles, California 90095, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-03 | DOI: https://doi.org/10.2138/am-2016-5516

Abstract

Detrital zircons as old as nearly 4.4 Ga offer insights into the earliest moments of Earth history. Results of geochemical investigations of these grains have been interpreted to indicate their formation in near-H2O saturated meta- and peraluminous magmas under a relatively low (15–30 °C/km) geotherm. A key feature in pursuing a petrotectonic model that explains the full spectrum of these observations is their seeming contrast to most Phanerozoic magmatic zircons, specifically their low Ti-in-zircon crystallization temperatures and inclusion assemblages. The ~22 Ma Arunachal leucogranites of the eastern Himalaya appear, however, to be a rare exception to this generality. They show large-ion lithophile covariance trends indicative of wet basement melting together with a normal distribution of magmatic crystallization temperatures about an average of 660 °C. In the same fashion as Hadean zircons, Arunachal leucogranite and host gneiss zircons are dominated by muscovite + quartz inclusions that yield formation pressures of 5–15 kbars. We suggest that the Arunachal leucogranites originated in the hanging wall of a megathrust that carried H2O-rich foreland sediments to depths of >20 km whereupon de-watering reactions released fluids that fluxed hanging wall anatexis. Modeling suggests the thermal structure of this continental collision environment may have been broadly similar to a Hadean ocean-continent subduction zone. The similarity of these two environments, separated by over 4 Ga may explain seemingly common features of the Hadean and Arunachal leucogranite zircons. Their key difference is the absence of metaluminous magmas in the continental collision environment, which is shielded from juvenile additions.

Key words: Early Earth; zircon; geochronology; geochemistry; crustal magmas; Himalaya

Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.

References

  • Aikman, A.B. (2007) Tectonics of the Eastern Tethyan Himalaya. Ph.D. thesis, Research School of Earth Sciences, The Australian National University.Google Scholar

  • Aikman, A.B., Harrison, T.M., and Lin, D. (2008) Evidence for early (>44 Ma) crustal thickening, Tethyan Hiamalaya, southeastern Tibet. Earth and Planetary Science Letters, 274, 14–23.Google Scholar

  • Aikman, A.B., Harrison, T.M., and Herman, J. (2012a) Age and thermal history of Eo- and Neohimalayan granitoids, Eastern Himalaya. Journal of Asian Earth Sciences, 51, 85–97.Google Scholar

  • Aikman, A.B., Harrison, T.M., and Herman, J. (2012b) The origin of Eo- and Neohimalayan granitoids, Eastern Tibet. Journal of Asian Earth Sciences, 58, 143–157.Google Scholar

  • Amelin, Y. (2004) Sm-Nd systematics of zircon. Chemical Geology, 211, 375–387.Google Scholar

  • Amelin, Y.V., Lee, D.C., Halliday, A.N., and Pidgeon, R.T. (1999) Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature, 399, 252–255.Google Scholar

  • Ayres, M., and Harris, N. (1997) REE fractionation and Nd-isotope disequilibrium during crustal anatexis: Constraints from Himalayan leucogranites. Chemical Geology, 139, 249–269.Google Scholar

  • Barker, F. (1979) Trondhjemite: Definition, environment and hypotheses of origin. In F. Barker, Ed., Trondhjemites, Dacites, and Related Rocks, 6, p. 1–12. Elsevier, Amsterdam.Google Scholar

  • Bell, E.A., and Harrison, T.M. (2013) Post-Hadean transitions in Jack Hills zircon provenance: A signal of the Late Heavy Bombardment? Earth and Planetary Science Letters, 364, 1–11.Google Scholar

  • Bell, E.A., Harrison, T.M., McCulloch, M.T., and Young, E.D. (2011) Early Archean crustal evolution of the Narryer Gneiss Complex inferred from Lu-Hf systematics of Jack Hills zircons. Geochimica et Cosmochimica Acta, 75, 4816–4829.Google Scholar

  • Bell, E.A., Boehnke, P., Hopkins-Wielicki, M.D., and Harrison, T.M. (2015) Distinguishing primary and secondary inclusion assemblages in Jack Hills zircons. Lithos, 234, 15–26.Google Scholar

  • Bird, P. (1978) Initiation of intracontinental subduction in the Himalaya. Journal of Geophysical Research, 83, 4975–4987.Google Scholar

  • Blichert-Toft, J., and Albarède, F. (2008) Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. Earth and Planetary Science Letters, 265, 686–702.Google Scholar

  • Bollinger, L., Avouac, J.P., Beyssac, O., Catlos, E.J., Harrison, T.M., Grove, M., Goffé, B., and Sapkota, S. (2004) Thermal structure and exhumation history of the Lesser Himalaya in central Nepal. Tectonics, 23, TC5015.CrossrefGoogle Scholar

  • Bowring, S.A., and Williams, I.S. (1999) Priscoan (4.00-4.03 Ga) orthogneisses from northwestern Canada. Contributions to Mineralogy and Petrology, 134, 3–16.Google Scholar

  • Caro, G., Bennett, V.C., Bourdon, B., Harrison, T.M., Mojzsis, S.J., and Harris, J.W. (2008) Precise analysis of 142Nd/144Nd in small samples: Application to Hadean zircons from Jack Hills (W. Australia) and diamond inclusions from Finsch (S. Africa). Chemical Geology, 247, 253–265.Google Scholar

  • Cavosie, A.J., Wilde, S.A., Liu, D., Weiblen, P.W., and Valley, J.W. (2004) Internal zoning and U-Th-Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348–1576 Ma) magmatism. Precambrian Research, 135, 251–279.Google Scholar

  • Cavosie, A.J., Valley, J.W., Wilde, S.A., and EIMF (2005) Magmatic δ18O in 4400–3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean. Earth and Planetary Science Letters, 235, 663–681.Google Scholar

  • Célérier, J., Harrison, T.M., Beyssac, O., Herman, F., Dunlap, W.J., and Webb, A.A.G. (2009) The Kumaun and Garwhal Lesser Himalaya, India. Part 2: Thermal and deformation histories. Geological Society of America Bulletin, 121, 1281–1297.Google Scholar

  • Colchen, M., LeFort, P., and Pêcher, A. (1986) Recherches géologiques dans l’Himalaya du Népal Annapurna, Manaslu, Ganesh: Paris, Editions du Centre National de la Recherche Scientifique, Paris, 136 p.Google Scholar

  • Curetti, N., Ferraris, G., and Ivaldi, G. (2008) Correlation between crystallization pressure and structural parameters of phengites. American Mineralogist, 93, 451–455.Google Scholar

  • Debon, F., LeFort, P., Sheppard, S., and Sonet, J. (1986) The four plutonic belts of the Transhimalaya-Himalaya: A chemical, mineralogical, isotopic, and chronological synthesis along a Tibet-Nepal granite section. Journal of Petrology, 27, 219–250.Google Scholar

  • DePaolo, D.J., Cerling, T.E., Hemming, S.R., Knoll, A.H., Richter, F.M., Royden, L.H., Rudnick, R.L., Stixrude, L., and Trefil, J.S. (2008) Origin and Evolution of Earth: Research questions for a changing planet, 152 pp. National Academy Press, Washington, D.C.Google Scholar

  • Douce, A.E.P., and Harris, N.B.W. (1998) Experimental constraints on Himalayan anatexis. Journal of Petrology, 39, 689–710.Google Scholar

  • England, P., and Molnar, P. (1993) The interpretation of inverted metamorphic isograds using simple physical calculations. Tectonics, 12, 145–157.Google Scholar

  • England, P., LeFort, P., Molnar, P., and Pecher, A. (1992) Heat sources for Tertiary magmatism and anatexis in the Annapurna-Manaslu region of Central Nepal. Journal of Geophysical Research, 97, 2107–2128.Google Scholar

  • Ferry, J.B., and Watson, E.B. (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154, 429–437.Google Scholar

  • Fu, B., Page, F.Z., Cavosie, A.J., Fournelle, J., Kita, N.T., Lackey, J.S., Wilde, S.A., and Valley, J.W. (2008) Ti-in-zircon thermometry: Applications and limitations. Contributions to Mineralogy and Petrology, 156, 197–215.Google Scholar

  • Gehrels, G., Kapp, P., DeCelles, P., Pullen, A., Blakey, R., Weislogel, A., Lin, D., Guynn, J., Martin, A., McQuarie, N., and Yin, A. (2011) Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tec-tonics, 30, TC5016.Google Scholar

  • Guillot, S., and LeFort, P. (1995) Geochemical constraints on the bimodal origin of High Himalayan leucogranites. Lithos, 35, 221–234.Google Scholar

  • Harris, N., and Inger, S. (1992) Trace element modelling of pelite-derived granites. Contributions to Mineralogy and Petrology, 110, 46–56.Google Scholar

  • Harris, N., Ayres, M., and Massey, J. (1995) Geochemistry of granitic melts produced during the incongruent melting of muscovite—Implications for the extraction of Himalayan leukogranite magmas. Journal of Geophysical Research, 100, 15767–15777.Google Scholar

  • Harrison, T.M. (2009) The Hadean crust: Evidence from >4 Ga zircons. Annual Reviews of Earth and Planetary Science, 37, 479–505.Google Scholar

  • Harrison, T.M., and Schmitt, A.K. (2007) High sensitivity mapping of Ti distributions in Hadean zircons. Earth and Planetary Science Letters, 261, 9–19.Google Scholar

  • Harrison, T.M., Lovera, O.M., and Grove, M. (1997) New insights into the origin of two contrasting Himalayan granite belts. Geology, 25, 899–902.Google Scholar

  • Harrison, T.M., Grove, M., Lovera, O.M., and Catlos, E.J. (1998) A model for the origin of Himalayan anatexis and inverted metamorphism. Journal of Geophysical Research, 103, 27017–27032.Google Scholar

  • Harrison, T.M., Grove, M., McKeegan, K.D., Coath, C.D., Lovera, O.M., and LeFort, P.L. (1999) Origin and episodic emplacement of the Manaslu intrusive complex, central Himalaya. Journal of Petrology, 40, 3–19.Google Scholar

  • Harrison, T.M., Blichert-Toft, J., Müller, W., Albarede, F., Holden, P., and Mojzsis, S.J. (2005) Heterogeneous Hadean hafnium: Evidence of continental crust by 4.4–4.5 Ga. Science, 310, 1947–1950.Google Scholar

  • Harrison, T.M., Watson, E.B., and Aikman, A.B. (2007) Temperature spectra of zircon crystallization in plutonic rocks. Geology, 35, 635–638.Google Scholar

  • Harrison, T.M., Schmitt, A.K., McCulloch, M.T., and Lovera, O.M. (2008) Early (≥4.5 Ga) formation of terrestrial crust: Lu-Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth and Planetary Science Letters, 268, 476–486.Google Scholar

  • Henry, P., LePichon, X., and Goffe, B. (1997) Kinematic, thermal and petrological model of the Himalayas: Constraints related to metamorphism within the underthrust Indian crust and topographic elevation. Tectonophysics, 273, 31–56.Google Scholar

  • Hopkins, M., Harrison, T.M., and Manning, C.E. (2008) Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions. Nature, 456, 493–496.Google Scholar

  • Hopkins, M., Harrison, T.M., and Manning, C.E. (2010) Constraints on Hadean geodynamics from mineral inclusions in >4 Ga zircons. Earth and Planetary Science Letters, 298, 367–376.Google Scholar

  • Hopkins, M., Harrison, T.M., and Manning, C.E. (2012) Metamorphic replacement of mineral inclusions in detrital zircon from Jack Hills, Australia: Implications for the Hadean Earth: Comment. Geology, 40, 281–281.Google Scholar

  • Hou, Z.Q., Zheng, Y.C., Zeng, L.S., Gao, L.E., Huang, K.X., Li, W., and Sun, Q.Z. (2012) Eocene–Oligocene granitoids in southern Tibet. Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen. Earth and Planetary Science Letters, 349, 38–52.Google Scholar

  • Huerta, A.D., Royden, L.H., and Hodges, K.V. (1998) The thermal structure of collisional orogens as a response to accretion, erosion, and radiogenic heating. Journal of Geophysical Research, 103, 15287–15302.Google Scholar

  • Inger, S., and Harris, N. (1993) Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. Journal of Petrology, 34, 345–368.Google Scholar

  • Jaupart, C. (1983) Horizontal heat transfer due to radioactivity contrasts: Causes and consequences of the linear heat flow relation. Geophysical Journal International, 75, 411–435.Google Scholar

  • Kaula, W.M. (1979) Thermal evolution of Earth and Moon growing by planetesimal impacts. Journal of Geophysical Research: Solid Earth, 84, 999–1008.Google Scholar

  • King, J., Harris, N., Argles, T., Parrish, R., and Zhang, H. (2011) Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet. Geological Society of America Bulletin, 123, 218–239.Google Scholar

  • Koester, E., Pawley, A.R., Luis, A.D., Fernandes, L.A.D., Porcher, C.C., and Soliani, E. (2002) Experimental melting of cordierite gneiss and the petrogenesis of syntranscurrent peraluminous granites in southern Brazil. Journal of Petrology, 43, 1595–1616.Google Scholar

  • Korenaga, J. (2006) Archean geodynamics and the thermal evolution of Earth. Archean Geodynamics and Environments, 7–32. AGU Geophysical Monograph Series 164, Washington, D.C.CrossrefGoogle Scholar

  • Kumar, G. (1997) Geology of Arunachal Pradesh: Bangalore. Geological Society of India, 217 p.Google Scholar

  • Lackey, J.S., Cecil, M.R., Windham, C.J., Frazer, R.E., Bindeman, I.N., and Gehrels, G.E. (2012) The Fine Gold Intrusive Suite: The roles of basement terranes and magma source development in the Early Cretaceous Sierra Nevada batholith. Geosphere, 8, 292–313.Google Scholar

  • Le Breton, N., and Thompson, A.B. (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contributions to Mineralogy and Petrology, 99, 226–237.Google Scholar

  • LeFort, P. (1975) Himalayas, the collided range. Present knowledge of the continental arc. American Journal of Science, 275, 1–44.Google Scholar

  • LeFort, P. (1996) Evolution of the Himalaya. In A. Yin and T. Harrison, Eds., The Tectonics of Asia, p. 95–106. Cambridge University Press, U.K.Google Scholar

  • LeFort, P., Vuney, M., Deniel, C., and France-Lanord, C. (1987) Crustal generation of the Himalayan leucogranites. Tectonophysics, 134, 39–57.Google Scholar

  • Luth, W.C., Jahns, R.H., and Tuttle, O.F. (1964) The granite system at pressures of 4 to 10 kilobars. Journal of Geophysical Research, 69, 759–773.Google Scholar

  • Maas, R., and McCulloch, M.T. (1991) The provenance of Archean clastic metasediments in the Narryer gneiss complex, Western Australia: Trace element geochemistry, Nd isotopes, and U-Pb ages from detrital zircons. Geochimica et Cosmochimica Acta, 55, 1915–1932.Google Scholar

  • Maas, R., Kinny, P.D., Williams, I., Froude, D.O., and Compston, W. (1992) The Earth’s oldest known crust: A geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochimica et Cosmochimica Acta, 56, 1281–1300.Google Scholar

  • Marchi, S., Bottke, W.F., Elkins-Tanton, L.T., Bierhaus, M., Wuennemann, K., Morbidelli, A., and Kring, D.A. (2014) Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature, 511, 578–582.Google Scholar

  • Massonne, H.-J., and Schreyer, W. (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contributions to Mineralogy and Petrology, 96, 212–224.Google Scholar

  • Massonne H.-J., and Szpurka, Z. (1997) Thermodynamic properties of white micas on the basis of high-pressure experiments in the systems K2O-MgO-Al2O3-SiO2-H2O and K2O-FeO-Al2O3-SiO2-H2O. Lithos, 41, 229–250.Google Scholar

  • Menneken, M., Nemchin, A.A., Geisler, T., Pidgeon, R.T., and Wilde, S.A. (2007) Hadean diamonds in zircon from Jack Hills, Western Australia. Nature, 448, 917–920.Google Scholar

  • Mojzsis, S.J., Harrison, T.M., and Pidgeon, R.T. (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4300 Myr ago. Nature, 409, 178–181.Google Scholar

  • O’Neil, J., Carlson, R.W., Francis, D., and Stevenson, R.K. (2008) Neodymium-142 evidence for Hadean mafic crust. Science, 321, 1828–1831.Google Scholar

  • O’Neill, C., and Debaille, V. (2014) The evolution of Hadean-Eoarchaean geodynamics. Earth and Planetary Science Letters, 406, 49–58.Google Scholar

  • Paces, J.B., and Miller, J.D. (1993) Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System. Journal of Geophysical Research, 98, 13997–14013.Google Scholar

  • Pan, G.T., Ding, J., Yao, D.S., and Wang, L.Q. (2004) Geological map of the Qinghai-Xizang (Tibet) Plateau and adjacent areas. Chengdu Cartographic Publishing House.Google Scholar

  • Peck, W.H., Valley, J.W., Wilde, S.A., and Graham, C.M. (2001) Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ18O continental crust and oceans in the Early Archean. Geochimica et Cosmochimica Acta, 65, 4215–4229.Google Scholar

  • Rasmussen, B., Fletcher, I.R., Muhling, J.R., Gregory, C.J., and Wilde, S.A. (2011) Metamorphic replacement of mineral inclusions in detrital zircon from Jack Hills, Australia: Implications for the Hadean Earth. Geology, 39, 1143–1146.Google Scholar

  • Rollinson, H. (2008) Ophiolitic trondhjemites: a possible analogue for Hadean felsic “crust.” Terra Nova, 20, 364–369.Google Scholar

  • Ruppel, C., and Hodges, K.V. (1994) Pressure-temperature-time paths from two-dimensional thermal models: Prograde, retrograde and inverted metamorphism. Tectonics, 13, 17–44.Google Scholar

  • Shirey, S.B., Kamber, B.S., Whitehouse, M.J., Mueller, P.A., and Basu, A.R. (2008) A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: Implications for the onset of plate tectonic subduction. Geological Society of America Special Papers, 440, 1–29.Google Scholar

  • Sizova, E., Gerya, T., Brown, M., and Perchuk, L.L. (2010) Subduction styles in the Precambrian: insight from numerical experiments. Lithos, 116, 209–229.Google Scholar

  • Solomon, S.C. (1980) Differentiation of crusts and cores of the terrestrial planets: Lessons for the early Earth? Precambrian Research, 10, 177–194.Google Scholar

  • Trail, D., Mojzsis, S.J., Harrison, T.M., Schmitt, A.K., Watson, E.B., and Young, E.D. (2007) Constraints on Hadean zircon protoliths from oxygen isotopes, REEs and Ti-thermometry. Geochemistry, Geophysics, Geosystems (G3), 8, Q06014, doi .CrossrefGoogle Scholar

  • Turner, G., Harrison, T.M., Holland, G., Mojzsis, S.J., and Gilmour, J. (2004) Xenon from extinct 244Pu in ancient terrestrial zircons. Science, 306, 89–91.Google Scholar

  • Turner, G., Busfield, A., Crowther, S., Mojzsis, S.J., Harrison, T.M., and Gilmour, J. (2007) Pu-Xe, U-Xe, U-Pb chronology and isotope systematics of ancient zircons from Western Australia. Earth and Planetary Science Letters, 261, 491–499.Google Scholar

  • Ushikubo, T., Kita, N.T., Cavosie, A.J., Wilde, S.A., Rudnick, R.L., and Valley, J.W. (2008) Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth’s earliest crust. Earth and Planetary Science Letters, 272, 666–676, doi: .CrossrefGoogle Scholar

  • Valley, J.W. (2003) Oxygen isotopes in zircon. Reviews in Mineralogy and Geo-chemistry, 53, 343–385.Google Scholar

  • Velde, B. (1965) Phengite micas: Synthesis, stability, and natural occurrence. American Journal of Science, 263, 886–913.Google Scholar

  • Velde, B. (1967) Si+4 content of natural phengite. Contributions to Mineralogy and Petrology, 14, 250–258.Google Scholar

  • Vidal, P., Cocherie, A., and Le Fort, P. (1982) Geochemical investigations of the origin of the Manaslu leucogranite (Himalaya, Nepal). Geochimica et Cosmochimica Acta, 46, 2279–2292.Google Scholar

  • Ward, P.D., and Brownlee, D. (2000) Rare Earth: Why Complex Life is Uncommon in the Universe, 335 pp. Copernicus, New York.Google Scholar

  • Watson, E.B., and Harrison, T.M. (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308, 841–844.Google Scholar

  • Wetherill, G.W. (1980) Formation of the terrestrial planets. Annual Reviews in Astronomy and Astrophysics, 18, 77–113.Google Scholar

  • White, R.W., Powell, R.W., and Holland, T.J.B. (2001) Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19, 139–153.Google Scholar

  • Yin, A., and Harrison, T.M. (2000) Geologic evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28, 211–280.Google Scholar

  • Yin, A., Dubey, C.S., Kelty, T.K., Webb, A.A.G., Harrison, T.M., Chou, C.Y., and Célérier, J. (2009) Geologic correlation of the Himalayan orogen and Indian craton: Part 2. Structural geology, geochronology, and tectonic evolution of the Eastern Himalaya. Geological Society of America Bulletin, 122, 360–395.Google Scholar

  • Zhang, H.F., Harris, N., Parrish, R., Kelley, S., Zhang, L., Rogers, N., Argles, T., and King, J. (2004) Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan Antiform. Earth and Planetary Science Letters, 228, 195–212.Google Scholar

About the article

Received: 2016-07-30

Accepted: 2016-02-05

Published Online: 2016-06-03

Published in Print: 2016-06-01


Citation Information: American Mineralogist, Volume 101, Issue 6, Pages 1348–1359, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5516.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in