Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 101, Issue 6


Ni-phyllosilicates (garnierites) from the Falcondo Ni-laterite deposit (Dominican Republic): mineralogy, nanotextures, and formation mechanisms by HRTEM and AEM

Cristina Villanova-De-Benavent
  • Corresponding author
  • Departament de Cristal·lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí i Franquès s/n, 08028 Barcelona, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fernando Nieto
  • Corresponding author
  • Departamento de Mineralogía y Petrología and IACT, Universidad de Granada, CSIC, Av. Fuentenueva, 18071 Granada, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cecilia Viti
  • Corresponding author
  • Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente, Università degli Studi di Siena, Via Laterina 8, 53100 Siena, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joaquín A. Proenza
  • Corresponding author
  • Departament de Cristal·lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí i Franquès s/n, 08028 Barcelona, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Salvador Galí
  • Corresponding author
  • Departament de Cristal·lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí i Franquès s/n, 08028 Barcelona, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Josep Roqué-Rosell
  • Corresponding author
  • Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 15R0317, Berkeley, California 94720, U.S.A.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-03 | DOI: https://doi.org/10.2138/am-2016-5518


Ni-bearing magnesium phyllosilicates (garnierites) are significant Ni ores in Ni-laterites worldwide. The present paper reports a detailed TEM investigation of garnierites from the Falcondo Ni-laterite deposit (Dominican Republic). Different types of garnierites have been recognized, usually consisting of mixtures between serpentine and talc-like phases that display a wide range of textures at the nano-meter scale. In particular, chrysotile tubes, polygonal serpentine, and lizardite lamellae are intergrown with less crystalline, talc-like lamellae. Samples consisting uniquely of talc-like and of sepiolitefalcondoite were also observed, occurring as distinctive thin lamellae and long ribbon-shaped fibers, respectively. HRTEM imaging indicates that serpentine is replaced by the talc-like phase, whereas TEM-AEM data show preferential concentration of Ni in the talc-like phase. We suggest, therefore, that the crystallization of Ni-bearing phyllosilicates is associated with an increase in the silica activity of the system, promoting the replacement of the Ni-poor serpentine by the Ni-enriched talc-like phase. These results have interesting implications in material science, as garnierites are natural analogs of Ni-bearing phyllosilicate-supported synthetic catalysts. Finally, SAED and HRTEM suggest that the Ni-bearing talc-like phase corresponds to a variety of talc with extra water, showing larger d001 than talc (i.e., 9.2–9.7 Å), described as “kerolite”-“pimelite” in clay mineral literature.

Key words: Ni-laterites; garnierites; chrysotile; polygonal serpentine; lizardite; “kerolite”-“pimelite”; sepiolite-falcondoite; HRTEM


  • Abad, I., Mata, M.P., Nieto, F., and Velilla, N. (2001) The phyllosilicates in diagenetic-metamorphic rocks of the South Portuguese Zone, southwestern Portugal. Canadian Mineralogist, 39, 1571–1589.Google Scholar

  • Aiglsperger, T., Proenza, J.A., Zaccarini, F., Lewis, J.F., Garuti, G., Labrador, M., and Longo, F. (2015) Platinum group minerals (PGM) in the Falcondo Nilaterite deposit, Loma Caribe peridotite (Dominican Republic). Mineralium Deposita, 50, 105–123.Google Scholar

  • Andréani, M., Grauby, O., Baronnet, A., and Muñoz, M. (2008) Occurrence, composition and growth of polyhedral serpentine. European Journal of Mineralogy, 20, 159–171.Google Scholar

  • Baronnet, A., and Devouard, A. (2005) Microstructures of common polygonal serpentines from axial HRTEM imaging, electron diffraction and lattice-simulation data. Canadian Mineralogist, 43, 513–542.Google Scholar

  • Brindley, G.W. (1978) The structure and chemistry of hydrous nickel containing silicate and aluminate minerals. Bulletin du Bureau de Recherches Géologiques et Minières, section II, 3, 233–245.Google Scholar

  • ——— (1980) The structure and chemistry of hydrous nickel-containing silicate and nickel-aluminium hydroxy minerals. Bulletin de Minéralogie, 103, 161–169.Google Scholar

  • Brindley, G.W., and Brown, G. (1980) Crystal Structures of Clay Minerals and Their X-ray Identification, 495 p. Mineralogical Society Monograph 5, London.Google Scholar

  • Brindley, G.W., and Hang, P.T. (1973) The nature of garnierite: I. Structure, chemical compositions and color characteristics. Clays and Clay Minerals, 21, 27–40.Google Scholar

  • Brindley, G.W., and Maksimović, Z. (1974) The nature and nomenclature of hydrous nickel-containing silicates. Clay Minerals, 10, 271–277.Google Scholar

  • Brindley, G.W., and Wan, H.-M. (1975) Compositions, structures and thermal behaviour of nickel-containing minerals in the lizardite–népouite series. American Mineralogist, 60, 863–871.Google Scholar

  • Cathelineau, M., Caumon, M.C., Massei, F., Brie, D., and Harlaux, M. (2015) Raman spectra of Ni-Mg kerolite: Effect of Ni-Mg substitution on O-H stretching vibrations. Journal of Raman Spectroscopy, 46, 933–940.Google Scholar

  • Dosbaba, M., and Novák, M. (2012) Quartz replacement by “kerolite” in graphic quartz-feldspar intergrowths from the Věžná I pegmatite, Czech Republic: a complex desilication process related to episyenitization. Canadian Mineralo-gist, 50, 1609–1622.Google Scholar

  • Elias, M. (2002) Nickel laterite deposits—Geological overview, resources and exploration. In D. Cooke and J. Pongratz, Eds., Giant Ore Deposits—Characteristics, Genesis, and Exploration, CODES Special Publication 4, p. 205–220. University of Tasmania, Hobart, Australia.Google Scholar

  • Esson, J., and Carlos, L. (1978) The occurrence, mineralogy and chemistry of some garnierites from Brazil. Bulletin du Bureau de Recherches Géologiques et Minières, section II, 3, 263–274.Google Scholar

  • Faust, G.T. (1966) The hydrous nickel-magnesium silicates—the garnierite group. American Mineralogist, 51, 33–36.Google Scholar

  • Faust, G.T., Fahey, J.J., Mason, B., and Dwornik, E.J. (1969) Pecoraite, Ni6Si4O10(OH)8, nickel analog of clinochrysotile, formed in the Wolf Creek meteorite. Science, 165, 59–60.Google Scholar

  • Faust, G.T., Fahey, J.J., Mason, B., and Dwornik, E.J. (1973) The disintegration of the Wolf Creek meteorite and the formation of pecoraite, the nickel analog of clinochrysotile. U.S. Geological Survey Professional Paper, 3480C, 107–135.Google Scholar

  • Freyssinet, Ph., Butt, C.R.M., and Morris, R.C. (2005) Ore-forming processes related to lateritic weathering. 100th Anniversary Volume, Economic Geology, 681–722.Google Scholar

  • Galí, S., Soler, J.M., Proenza, J.A., Lewis, J.F., Cama, J., and Tauler, E. (2012) Nienrichment and stability of Al-free garnierite solid-solutions: a thermodynamic approach. Clays and Clay Minerals, 60, 121–135.Google Scholar

  • Garnier, J. (1867) Essai sur la géologie et les ressources minérales de la NouvelleCalédonie. In Annales des mines, 6ème série, tome XII, 92 p. Dunod, Paris.Google Scholar

  • Gleeson, S.A., Butt, C.R., and Elias, M. (2003) Nickel laterites: a review. Society of Economic Geologists Newsletter, 54, 11–18.Google Scholar

  • Gleeson, S.A., Herrington, R.J., Durango, J., Velásquez, C.A., and Koll, G. (2004) The mineralogy and geochemistry of the Cerro Matoso S.A. Ni laterite deposit, Montelíbano, Colombia. Society of Economic Geology, 99, 1197–1213.Google Scholar

  • Golightly, J.P. (1981) Nickeliferous laterite deposits. 75th Anniversary Volume, Economic Geology, 710–735.Google Scholar

  • Haldemann, E.G., Buchan, R., Blowes, J.H., and Chandler, T. (1979) Geology of lateritic nickel deposits, Dominican Republic. In D.J.I. Evans, R.S. Shoemaker, and H. Veltman, Eds., International Laterite Symposium, 4, p. 57–84. Society of Mining Engineers of the American Institute of Mining, Metallurgical, and Petroleum Engineers, New York.Google Scholar

  • Kato, T. (1961) A study on the so-called garnierite from New-Caledonia. Miner-alogical Journal, 3, 107–121.Google Scholar

  • Kuhnel, R.A., Roorda, H.J., and Steensma, J.J.S. (1978) Distribution and partitioning of elements in nickeliferous laterites. Bulletin du Bureau de Recherches Géologiques et Minières section II, 3, 191–206.Google Scholar

  • Lewis, J.F., Draper, G., Proenza, J.A., Espaillat, J., and Jiménez, J. (2006) Ophiolite-related ultramafic rocks (serpentinites) in the Caribbean Region: A review of their occurrence, composition, origin, emplacement and Ni-laterite soils formation. Geologica Acta, 4, 237–263.Google Scholar

  • Lithgow, E.W. (1993) Nickel laterites of central Dominican Republic Part I. Mineralogy and ore dressing. In R.G. Reddy and R.N. Weizenbach, Eds., The Paul E. Queneau International Symposium, Extractive Metallurgy of Copper, Nickel and Cobalt, Volume I: Fundamental Aspects, p. 403–425. The Minerals, Metals and Materials Society, Portland.Google Scholar

  • Lopez-Munguira, A., and Nieto, F. (2000) Transmission electron microscopy study of very low-grade metamorphic rocks in Cambrian sandstones and shales. Ossa-Morena Zone, South-West Spain. Clays and Clay Minerals, 48, 213–223.Google Scholar

  • Manceau, A., and Calas, G. (1985) Heterogeneous distribution of nickel in hydrous silicates from New Caledonia ore deposits. American Mineralogist, 70, 549–558.Google Scholar

  • Marchesi, C., Garrido, C.J., Proenza, J.A., Konc, Z., Hidas, K., Lewis, J.F., and Lidiak, E., (2012) Mineral and whole rock compositions of peridotites from Loma Caribe (Dominican Republic): insights into the evolution of the oceanic mantle in the Caribbean region. European Geosciences Union General Assembly, Geophysical Research Abstracts 14, EGU2012–EGU12161. Vienna, Austria.Google Scholar

  • Mellini, M. (2013) Structure and microstructure of serpentine minerals. In F. Nieto and K.J.T. Livi, Eds., Minerals at the Nanoscale, p. 153–179. European Mineralogical Union Notes in Mineralogy (Mineralogical Society of Great Britain and Ireland), London.Google Scholar

  • Milton, C., Dwornik, E.J., and Finkelman, R.B. (1983) Pecoraite, the nickel analog of chrysotile, Ni3Si2O5(OH)4 from Missouri. Neues Jahrbuch für Mineralogie Monatschefte, 11, 513–523.Google Scholar

  • Montoya, J.W., and Baur, G.S. (1963) Nickeliferous serpentines, chlorites and related minerals found in two lateritic ores. American Mineralogist, 48, 1227–1238.Google Scholar

  • Moraes, L.J. (1935) Niquel no Brasil. Boletim Republica dos Estados Unidos do Brasil, 9, 168 p.Google Scholar

  • Pecora, W.T., and Hobbs S.W. (1942) Nickel deposit near Riddle Douglas County, Oregon. U.S. Geological Survey Bulletin, 931-I, 205–225.Google Scholar

  • Pecora, W.T., Hobbs, S.W., and Murata, K.J. (1949) Variations in garnierite from the nickel deposit near Riddle, Oregon. Economic Geology, 44, 13–23.Google Scholar

  • Pelletier, B. (1983) Localisation du nickel dans les minerais “garniéritiques” de Nouvelle-Calédonie. In D. Nahon, Ed., International Congress on Alteration Petrology, Sciences Géologiques Mémoires, 73, 173–183. Centre National de la Recherche Scientifique, Paris.Google Scholar

  • ——— (1996) Serpentines in nickel silicate ore from New Caledonia. Australasian Institute of Mining and Metallurgy Publication Series—Nickel conference, 6/96, 197–205. Kalgoorlie, Western Australia.Google Scholar

  • Poncelet, G., Jacobs, P., Delannay, F., Genet, M., Gerard, P., and Herbillon, A. (1979) Étude preliminaire sûr la localisation du nickel dans une garnierite naturelle. Bulletin de Minéralogie, 102, 379–385.Google Scholar

  • Post, J.E., Bish, D.L., and Heaney, P.J. (2007) Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of sepiolite. American Mineralogist, 92, 91–97.Google Scholar

  • Proenza, J.A., Zaccarini, F., Lewis, J., Longo, F., and Garuti, G. (2007) Chromite composition and platinum-group mineral assemblage of PGE-rich Loma Peguera chromitites, Loma Caribe peridotite, Dominican Republic. Canadian Mineralogist, 45, 211–228.Google Scholar

  • Roy, D.M., and Roy, R. (1954) An experimental study of the formation and properties of synthetic serpentines and related layer silicate minerals. American Mineralogist, 39, 957–975.Google Scholar

  • Sivaiah, M.V., Petit, S, Beaufort, M.F., Eyidi, D., Barrault, J., Batiot-Dupeyrat, C., and Valange, S. (2011) Nickel based catalysts derived from hydrothermally synthesized 1:1 and 2:1 phyllosilicates as precursors for carbon dioxide reforming of methane. Microporous and Mesoporous Materials, 140, 69–80.Google Scholar

  • Soler, J.M., Cama, J., Galí, S., Meléndez, W., Ramírez, A., and Estanga, J. (2008) Composition and dissolution kinetics of garnierite from the Loma de Hierro Ni-laterite deposit, Venezuela. Chemical Geology, 249, 191–202.Google Scholar

  • Springer, G. (1974) Compositional and structural variations in garnierites. Canadian Mineralogist, 12, 381–388.Google Scholar

  • Suárez, S., Nieto, F., Velasco, F., and Martín, F.J. (2011) Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23, 179–196.Google Scholar

  • Tauler, E., Proenza, J.A., Galí, S., Lewis, J.F., Labrador, M., García-Romero, E., Suárez, M., Longo, F., and Bloise, G. (2009) Ni-sepiolite-falcondoite in garnierite mineralization from the Falcondo Ni-laterite deposit, Dominican Republic. Clay Minerals, 44, 435–454.Google Scholar

  • Uyeda, N., Hang, P.T., and Brindley, G.W. (1973) The nature of garnierites: II. Electron-optical study. Clays and Clay Minerals, 21, 41–50.Google Scholar

  • Varela, J.D. (1984) La estructura de las garnieritas. Geología Colombiana, 13, 29–40.Google Scholar

  • Villanova-de-Benavent, C., Proenza, J.A., Galí, S., García-Casco, A., Tauler, E., Lewis, J.F., and Longo, F. (2014a) Garnierites and garnierites: Textures, mineralogy and geochemistry of garnierites in the Falcondo Ni-laterite deposit, Dominican Republic. Ore Geology Reviews, 58, 91–109.Google Scholar

  • Villanova-de-Benavent, C., Proenza, J.A., Galí, S., Nieto, F., García-Casco, A., Roqué-Rosell, J., Tauler, E., and Lewis, J.F. (2014b) Mineralogy of Niphyllosilicates in the Falcondo Ni-laterite deposit (Dominican Republic): A multiscale approach. Proceedings ot the twenty first meeting of the International Mineralogical Association IMA, 2014, 298.Google Scholar

  • Vitovskaya, I.V., and Berkhin, S.I. (1968) K вопроcу о природe кeролитa (On the question of the nature of kerolite). Kora Vyvetrivaniya, 10, 134–159.Google Scholar

  • Wells, M.A., Ramanaidou, E.R., Verrall, M., and Tessarolo, C. (2009) Mineralogy and crystal chemistry of “garnierites” in the Goro lateritic nickel deposit, New Caledonia. European Journal of Mineralogy, 21, 467–483.Google Scholar

  • Whitney, D.L., and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.Google Scholar

About the article

Received: 2015-07-30

Accepted: 2016-02-05

Published Online: 2016-06-03

Published in Print: 2016-06-01

Citation Information: American Mineralogist, Volume 101, Issue 6, Pages 1460–1473, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5518.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in