Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 101, Issue 6


A Cr3+ luminescence study of spodumene at high pressures: effects of site geometry, a phase transition, and a level-crossing

Earl O’Bannon III
  • Corresponding author
  • Department of Earth and Planetary Sciences, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, U.S.A
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Quentin Williams
  • Department of Earth and Planetary Sciences, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-03 | DOI: https://doi.org/10.2138/am-2016-5567


Cr3+ luminescence of the green Cr-bearing variety of spodumene (LiAlSi2O6) has been studied under hydrostatic conditions up to ~15 GPa. R-line luminescence is a particularly sensitive site-specific probe of the Al-site, and high-pressure phase transitions that affect the symmetry or electron density at this site should produce obvious changes in the luminescence spectra. Thus, the nature of Cr3+ luminescence is probed across known and possible phase transitions in spodumene. Discontinuous shifts of the R-lines and their sidebands to higher energy at 3.2 GPa are associated with the C2/c to P21/c phase transition. Both R-lines and sidebands shift to lower energy after the 3.2 GPa transition up to ~15 GPa. The C2/c to P21/c phase transition is confirmed to be first order in nature based on its observed hysteresis on decompression, and R-line and sideband measurements give no evidence of a second proposed transition up to ~15 GPa. The splitting between the R1 and R2 bands is dramatically enhanced by pressure, with the split decreasing at the phase transition. These trends correspond to pressure-induced shifts in the distortion of the M1 site, and a likely shift in off-centeredness of the Cr3+ ion. Pressure-induced decreases in line widths are consistent with the R-lines shifting at slower rates than the phonons to which they are most closely coupled, as demonstrated by large pressure shifts of vibronic peaks. Observations of a pressure-induced cross-over between the 4T2 and 2E levels of the Cr3+ ion indicate that spodumene undergoes a shift from an intermediate strength crystal field environment to a high strength crystal field environment at pressures between ambient and 3.2 GPa.

Key words: Spodumene; pyroxene; high pressure; phase transition; Cr3+ luminescence

References Cited

  • Angel, R.J. Bujak, M., Zhao, J., Gatta, G.D., and Jacobsen, S.D. (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. Journal of Applied Crystallography, 40, 26–32.Google Scholar

  • Ardit, M., Dondi, M., and Cruciani, G. (2014) On the structural relaxation around Cr3+ along binary solid solutions. European Journal of Mineralogy, 26, 359–370.Web of ScienceGoogle Scholar

  • Arlt, T., and Angel, R.J. (2000) Displacive phase transitions in C-centred clinopyroxenes: spodumene, LiScSi2O6 and ZnSiO3. Physics and Chemistry of Minerals, 27, 719–731.Google Scholar

  • Arlt, T., and Armbruster, T. (1997) The temperature-dependent P21/c-C2/c phase transition in the clinopyroxene kanoite MnMg[Si2O6]: A single-crystal X ray and optical study. European Journal of Mineralogy, 9, 953–964.Google Scholar

  • Bray, K.L. (2001) High pressure probes of electronic structure and luminescence properties of transition metal and lanthanide systems. Topics in Current Chemistry, 213, 1–94.Google Scholar

  • Cameron, M., Sueno, S., Prewitt, C.T., and Papike, J.J. (1973) High-temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite. American Mineralogist, 58, 594–618.Google Scholar

  • Chopelas, A. (1996) The fluorescence sideband method for obtaining acoustic velocities at high compressions: Application to MgO and MgAl2O4. Physics and Chemistry of Minerals, 23, 25–37.Google Scholar

  • Clark, J.R., Appleman, D.E., and Papike, J.J. (1968) Bonding in eight ordered clinopyroxenes isostructural with diopside. Contributions to Mineralogy and Petrology, 20, 81–85.Google Scholar

  • de Viry, D., Denis, J.P., Tercier, N., and Blanzat, B. (1987) Effect of pressure on trivalent chromium photoluminescence in fluoride garnet Na3In2Li3F12. Solid State Communications, 63, 1183–1188.Google Scholar

  • Dolan, J.F., Kappers, L.A., and Bartram, R.H. (1986) Pressure and temperature dependence of chromium photoluminescence in K2NaGaF6:Cr3+. Physical Review B, 33, 7339–7341.Google Scholar

  • Freire, P.T.C., Pilla, O., and Lemos, V. (1994) Pressure-induced level crossing in KZnF3:Cr3+. Physical Review B, 49, 9232–9235.Google Scholar

  • Fujishiro, I., Piermarini, G.J., Block, S., and Munro, R.G. (1982) Viscosities and glass transition pressures in the methanol-ethanol-water system. High Pressure Research in Science and Industry: Proceedings of the 8th AIRAPT Conference, 2, 608–611.Google Scholar

  • Gaft, M., Reisfeld, R., and Panczer, G. (2005) Modern Luminescence Spectroscopy of Minerals and Materials, 356 pp. Springer-Verlag, Berlin.Google Scholar

  • Grinberg, M., and Suchocki, A. (2007) Pressure-induced changes in the energetic structure of the 3d3 ions in solid matrices. Journal of Luminescence, 125, 97–103.Google Scholar

  • Henderson, B., Marshall, A., Yamaga, M., O’Donnell, K.P., and Cockayne, B. (1988) The temperature dependence of Cr3+ photoluminescence in some garnet crystals. Journal of Physics C, 21, 6187–6198.Google Scholar

  • Hommerich, U., and Bray, K.L. (1995) High-pressure laser spectroscopy of Cr3+:Gd3Sc2Ga3O12 and Cr3+:Gd3Ga5O12. Physical Review B, 51, 12133–12141.Google Scholar

  • Imbusch, G.F., Yen, W.M., Schawlow, A.L., McCumber, D.E., and Sturge, M.D. (1964) Temperature dependence of the width and position of the 2E → 4A2 fluorescence lines of Cr3+ and V2+ in MgO. Physical Review, 133, 1029–1034.Google Scholar

  • Jahren, A.H., Kruger, M.B., and Jeanloz, R. (1992) Alexandrite as a high-temperature pressure calibrant, and implications for the ruby-fluorescence scale. Journal of Applied Physics, 71, 1579–1584.Google Scholar

  • Jovanić, B.R. (2000) Effect of high pressure on fluorescence lifetime and position for R1 line in synthetic spinel MgAl2O4:Cr3+. Materials Science Forum, 352, 247–250.Google Scholar

  • Khomenko, V.M., and Platonov, A.N. (1985) Electronic absorption spectra of Cr3+ ions in natural clinopyroxenes. Physics and Chemistry of Minerals, 11, 261–265.Google Scholar

  • Kisliuk, P., and Moore, C.A. (1967) Radiation from the 4T2 state of Cr3+ in ruby and emerald. Physical Review, 160, 307–312.Google Scholar

  • Klotz, S., Chervin, J.C., Munsch, P., and Le Marchand, G. (2009) Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42, 075413.Google Scholar

  • Kottke, T., and Williams, F. (1983) Pressure dependence of the alexandrite emission spectrum. Physical Review B, 28, 1923–1927.Google Scholar

  • Kraft, S., Knittle, E., and Williams, Q. (1991) Carbonate stability in the Earth’s mantle: a vibrational spectroscopic study of aragonite and dolomite at high pressures and temperatures. Journal of Geophysical Research, 96, 17997–18009.Google Scholar

  • Mao, H.K., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91, 4673–4676.Google Scholar

  • Nestola, F., Ballaran, T.B., and Ohashi, H. (2008) The high-pressure C2/cP21/c phase transition along the LiAlSi2O6–LiGaSi2O6 solid solution. Physics and Chemistry of Minerals, 35, 477–484.Google Scholar

  • Piermarini, G.J., Block, S., and Barnett, J.D. (1973) Hydrostatic limits in liquids and solids to 100 kbar. Journal of Applied Physics, 44, 5377–5382.Google Scholar

  • Pommier, C.J.S., Denton, M.B., and Downs, R.T. (2003) Raman spectroscopic study of spodumene (LiAlSi2O6) through the pressure-induced phase change from C2/c to P21/c. Journal of Raman Spectroscopy, 34, 769–775.Google Scholar

  • Pommier, C.J., Downs, R.T., Stimpfl, M., Redhammer, G.J., and Denton, M.B. (2005) Raman and X-ray investigations of LiFeSi2O6 pyroxene under pressure. Journal of Raman Spectroscopy, 36, 864–871.Google Scholar

  • Redhammer, G.J., and Roth, G. (2004) Structural variation and crystal chemistry of LiMe3+Si2O6 clinopyroxenes Me3+= Al, Ga, Cr, V, Fe, Sc and In. Zeitschrift für Kristallographie, 219, 278–294.Google Scholar

  • Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Quadratic elongation: A quantitative measure of distortion in coordination polyhedra. Science, 172, 567–570.Google Scholar

  • Sangster, M.J.L., and McCombie, C.W. (1970) Calculation of phonon sidebands in emission spectra of V2+ and Ni2+ in MgO, Journal of Physics C, 3, 1498–1512.Google Scholar

  • Sanz-Ortiz, M.N., Rodriguez, F., Hernandez, I., Valiente, R., and Kuck, S. (2010) Origin of the 2E-4T2 Fano-type resonance in Cr3+-doped LiCaAlF6: Pressure-induced excited-state crossover. Physical Review B, 81, 045114.Web of ScienceGoogle Scholar

  • Syassen, K. (2008) Ruby under pressure. High Pressure Research, 28, 75–126.Google Scholar

  • Tanabe, Y., and Sugano, S. (1954) On the absorption spectra of complex ions, I. Journal of the Physical Society of Japan, 9, 753–766.Google Scholar

  • Taran, M.N., Ohashi, H., Langer, K., and Vishnevskyy, A.A. (2011) High-pressure electronic absorption spectroscopy of natural and synthetic Cr3+-bearing clinopyroxenes. Physics and Chemistry of Minerals, 38, 345–356.Web of ScienceGoogle Scholar

  • Taraschan, A.N., Taran, M.N., Rager, H., and Iwanuch, W. (2006) Luminescence spectroscopic study of Cr3+ in Brazilian topazes from Ouro Preto. Physics and Chemistry of Minerals, 32, 679–690.Google Scholar

  • Tribaudino, M., Nestola, F., Prencipe, M., and Rundlof, H. (2003) A single-crystal neutron-diffraction investigation of spodumene at 54 K. Canadian Mineralogist, 41, 521–527.Google Scholar

  • Ullrich, A., Schranz, W., and Miletich, R. (2009) The nonlinear anomalous lattice elasticity associated with the high-pressure phase transition in spodumene: A high-precision static compression study. Physics and Chemistry of Minerals, 36, 545–555.Web of ScienceGoogle Scholar

  • Walker, G., El Jaer, A., Sherlock, R., Glynn, T.J., Czaja, M., and Mazurak, Z. (1997) Luminescence spectroscopy of Cr3+ and Mn2+ in spodumene (LiAlSi2O6). Journal of Luminescence, 74, 278–280.Google Scholar

  • Wamsley, P., and Bray, K. (1994) The effect of pressure on the luminescence of Cr3+: YAG. Journal of Luminescence, 59, 11–17.Google Scholar

  • Williams, Q., and Jeanloz, R. (1985) Pressure shift of Cr3+-ion-pair emission in ruby. Physical Review B, 31, 7449–7451.Google Scholar

  • Zheng, W.-C. (1995) Determination of the local compressibilities for Cr3+ ions in some garnet crystals from high-pressure spectroscopy. Journal of Physics Condensed Matter, 7, 8351–8356.Google Scholar

About the article

Accepted: 2015-09-22

Received: 2016-01-22

Published Online: 2016-06-03

Published in Print: 2016-06-01

Citation Information: American Mineralogist, Volume 101, Issue 6, Pages 1360–1372, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5567.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in