Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2017: 2.645

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 101, Issue 6

Issues

Constraints on the solid solubility of Hg, Tl, and Cd in arsenian pyrite

Artur P. Deditius
  • Corresponding author
  • Murdoch University, School of Engineering and Information Technology, 90 South Street, Murdoch, Western Australia 6150, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Reich
  • Department of Geology, FCFM, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile
  • Andean Geothermal Center of Excellence, FCFM, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-03 | DOI: https://doi.org/10.2138/am-2016-5603

Abstract

Arsenic-rich (arsenian) pyrite can contain up to tens of thousands of parts per million (ppm) of toxic heavy metals such as Hg, Tl, and Cd, although few data are available on their solid solubility behavior. When a compilation of Hg, Tl, and Cd analyses from different environments are plotted along with As in a M(Hg, Tl, and Cd)-As log-log space, the resulting wedge-shaped distribution of data points suggests that the solid solubility of the aforementioned metals is strongly dependent on the As concentration of pyrite. The solid solubility limits of Hg in arsenian pyrite—i.e., the upper limit of the wedge-shaped zone in compositional space—are similar to the one previously defined for Au by Reich et al. (2005) (CHg,Au = 0.02CAs + 4 × 10–5), whereas the solubility limit of Tl in arsenian pyrite is approximated by a ratio of Tl/As = 1. In contrast, and despite a wedge-shaped distribution of Cd-As data points for pyrite in Cd-As log-log space, the majority of Cd analyses reflect the presence of mineral particles of Cd-rich sphalerite and/or CdS. Based on these data, we show that arsenian pyrite with M/As ratios above the solubility limit of Hg and Tl contain nanoparticles of HgS, and multimetallic Tl-Hg mineral nanoparticles. These results indicate that the uptake of Hg and Tl in pyrite is strongly dependent on As contents, as it has been previously documented for metals such as Au and Cu. Cadmium, on the other hand, follows a different behavior and its incorporation into the pyrite structure is most likely limited by the precipitation of Cd-rich nanoparticulate sphalerite. The distribution of metal concentrations below the solubility limit suggests that hydrothermal fluids from which pyrite precipitate are dominantly undersaturated with respect to species of Hg and Tl, favoring the incorporation of these metals into the pyrite structure as solid solution. In contrast, the formation of metallic aggregates of Hg and Tl or mineral nanoparticles in the pyrite matrix occurs when Hg and Tl locally oversaturate with respect to their solid phases at constant temperature. This process can be kinetically enhanced by high-to-medium temperature metamorphism and thermal processing or combustion, which demonstrates a retrograde solubility for these metals in pyrite.

Key words: Mercury; thallium; cadmium; arsenic; pyrite; nanoparticles

References cited

  • Abraitis, P.K., Pattrick, R.A.D., and Vaughan, D.J. (2004) Variations in compositional, textural and electrical properties of natural pyrite: a review. International Journal of Mineral Processing, 74, 41–59.Google Scholar

  • Agangi, A., Hofman, A., and Wohlgemuth-Ueberwasser, C.C. (2013) Pyrite zoning as a record of mineralization in the Ventersdorp contact reef, Witwatersrand Basin, South Africa. Economic Geology, 108, 1243–1272.Google Scholar

  • Barker, S.L.L., Hickey, K.A., Cline, J.S., Dipple, G.M., Kilburn, M.R., Vaughan, J.R., and Longo, A.A. (2009) Uncloaking invisible gold: Use of nano-SIMS to evaluate gold, trace elements, and sulphur isotopes in pyrite from Carlin-type gold deposits. Economic Geology, 104, 897–904.Google Scholar

  • Barnes, H.L., and Seward, T.M. (1997) Geothermal systems and mercury deposits. In H.L. Barnes, Ed., Geochemistry of Hydrothermal Ore Deposits, 3rd ed., p. 699–736. Wiley, New York.Google Scholar

  • Behra, P., Bonnissel-Gissinger, P., Alnot, M., Revel, R., and Erhardt, J.J. (2001) XPS and XAS study of the sorption of Hg(II) onto pyrite. Langmuir, 17, 3970–3979.Google Scholar

  • Berner, Z.A., Puchelt, H., Nöltner, T., and Kramaer, U. (2013) Pyrite geochemistry in the Taoracian Posidonia Shale of south-west Germany: Evidence for contrasting trace-element patterns of diagenetic and syngenetic pyrites. Sedimentology, 60, 548–573.Google Scholar

  • Biagioni, C., D’Orazio, M., Vezzoni, S., Dini, A., and Orlandi, P. (2013) Mobilization of Tl-Hg-As-Sb-(Ag,Cu)-Pb sulfosalt melts during low-grade metamorphism in the Alpi Apuane (Toscany, Italy). Geology, 41, 747–750.Google Scholar

  • Blenk, O., Bucher, E., and Willeke, G. (1993) p-type conduction in pyrite single crystals prepared by chemical vapor transport. Applied Physics Letters, 62, 2093.Google Scholar

  • Bonifacio, C.S., Carenco, S., Wu, C.-H., House, S.D., Bluhm, H., and Yang, J.C. (2015) Thermal stability of core-shell nanoparticles: A combined in situ study by XPS and TEM. Chemistry of Materials, 27, 6960–6968.Google Scholar

  • Bostick, B.C., Fendorf, S., and Fendorf, M. (2000) disulphide disproportionation and CdS formation upon cadmium sorption on FeS2. Geochimica et Cosmochimica Acta, 64, 247–255.Google Scholar

  • Bower, J., Savage, K.S., Weinman, B., Barnett, M.O., Hamilton, W.P., and Harper, W.F. (2008) Immobilization of mercury by pyrite (FeS2). Environmental Pollution, 156, 504–514.Google Scholar

  • Cabral, A.R., Koglin, N., Strauss, H., Brätz, H., and Kwitko-Ribero, R. (2013) Regional sulphate-hematite-sulfide zoning in the auriferous Mariana anticline, Quadrilétero Ferrífero of Minas Gerais, Brazil. Mineralium Deposita, 48, 805–816.Google Scholar

  • Cepedal, A., Fuertes-Fuente, M., Martin-Izard, A., González-Instal, S., and Barrero, M. (2008) Gold-bearing As-rich pyrite and arsenopyrite from the El Valle gold deposit, Asturias, northwestern Spain. Canadian Mineralogist, 46, 233–247.Google Scholar

  • Chouinard, A., Paquette, J., and Williams-Jones, A.E. (2005) Crystallographic controls on trace-element incorporation in auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile-Argentina. Canadian Mineralogist, 43, 951–963.Google Scholar

  • Cline, J.S. (2001) Timing of gold and arsenic sulfide mineral deposition at the Getchell Carlin-type gold deposit, North-Central Nevada. Economic Geology, 96, 75–89.Google Scholar

  • Cook, N.J., Ciobanu, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B., and Melcher, F. (2009) Trace and minor elements in sphalerite: A LA-ICP-MS study. Geochimica et Cosmochimica Acta, 73, 4761–4791.Google Scholar

  • Deditius, A.P., Utsunomiya, S., Renock, D., Ewing, R.C., Ramana, C.V., Becker, U., and Kesler, S.E. (2008) A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochimica et Cosmochimica Acta, 72, 2919–2933.Google Scholar

  • Deditius, A.P., Utsunomiya, S., Ewing, R.C., and Kesler, S.E. (2009) Nanoscale “liquid” inclusions of As-Fe-S in arsenian pyrite. American Mineralogist, 94, 391–394.Google Scholar

  • Deditius, A.P., Utsunomiya, S., Kesler, S.E., Reich, M., and Ewing, R.C. (2011) Trace elements nanoparticles in pyrite. Ore Geology Reviews, 42, 32–46.Google Scholar

  • Deditius, A.P., Reich, M., Kesler, S.E., Utsunomiya, S., Chryssoulis, S.L., Walshe, J., and Ewing, R.C. (2014) The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochimica et Cosmochimica Acta, 140, 644–670.Google Scholar

  • Deol, S., Deb, M., Large, R.R., and Gilbert, S. (2012) LA-ICPMS and EMPA studies of pyrite, arsenopyrite and loellingite from the Bhukia-Jagpura gold prospect, southern Rajastan, India: Implicaitons for ore genesis and gold remobilization. Chemical Geology, 326-327, 72–87.Google Scholar

  • Ding, Z., Zheng, B., Long, J., Belkin, H.E., Finkelman, R.B., Chen, C., Zhou, D., and Zhou, Y. (2001) Geological and geochemical characteristics of high arsenic coals from endemic arsenosis areas in southwestern Guizhou Province, China. Applied Geochemistry, 16, 1353–1360.Google Scholar

  • Duchesne, J.C., Rouhart, A., Schoumacher, C., and Dillen, H. (1983) Thallium, nickel, cobalt and other trace elements in iron sulphides from Belgian lead-zinc vein deposits. Mineralium Deposita, 18, 303–313.Google Scholar

  • Ehrhardt, J.J., Behra, P., Bonnisel-Gissinger, P., and Alnot, M. (2000) XPS study of the sorption of Hg(II) onto pyrite FeS2. Surface and Interface Analysis, 30, 269–272.Google Scholar

  • Emsbo, P., Hofstra, A.H., Lauha, E.A., Griffin, G.L., and Hutchinson, R.W. (2003) Origin of high-grade gold ore, source of ore fluid components, and genesis of the Miekle and neighbouring Carlin-type deposits, Northern Carlin Trend, Nevada. Economic Geology, 98, 1069–1105.Google Scholar

  • Erwin, S.C., Zu, L., Haftel, M.I., Efros, A.L., Kennedy, T.A., and Norris, D.J. (2005) Doping semiconductor nanocrystals. Nature, 436, 91–94.Google Scholar

  • Franchini, M., McFarlane, C., Maydagán, L., Reich, M., Lentz, D.R., Mainert, L., and Bouhier, V. (2015) Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition. Ore Geology Reviews, 66, 366–387.Google Scholar

  • Genna, D., and Gaboury, D. (2015) Deciphering the hydrothermal evolution of a VMS system by LA-ICP-MS using trace elements in pyrite: An example from the Bracemac-McLeod deposits, Abitibi, Canada, and implications for exploration. Economic Geology, 110, 2087–2108.Google Scholar

  • González-Jiménez, J., Reich, M., Camprubí, A., Gervilla, F., Griffin, W.L., Colás, V., O’Reilly, S.Y., Proenza, J.A., Martini, M., Pearson, N.J., and Centeno-García, E. (2015) Thermal metamorphism of mantle chromites and the stability of noble-metal nanoparticles. Contributions to Mineralogy and Petrology, 170, 15.Google Scholar

  • Griffin, W.L., Ashley, P.M., Ryan, C.G., Sie, S.H., and Suter, G.F. (1991) Pyrite geochemistry in the North Arm epithermal Ag-Au deposit, Queensland, Australia: A proton-microprobe study. Canadian Mineralogist, 29, 185–198.Google Scholar

  • Hannington, M.D., Thompson, G., Rona, P.A., and Scott, S.D. (1988) Gold and native copper in supergene sulfides from the Mid-Atlantic Ridge. Nature, 333, 64–66.Google Scholar

  • Hannington, M., Herzig, P., Scott, S., Thompson, G., and Rona, P. (1991) Comparative mineralogy and geochemistry of gold-bearing sulfide deposits on the mid-ocean ridges. Marine Geology, 101, 217–248.Google Scholar

  • Hofmann, A., Bekker, A., Rouxel, O., Rumble, D., and Master, S. (2009) Multiple sulfur and iron isotope composition of detrital pyrite in Archean sedimentary rocks: A new tool for provenance analysis. Earth and Planetary Science Letters, 286, 436–445.Google Scholar

  • Hower, J.C., Campbell, J.L., Teesdale, W.J., Nejedny, Z., and Robertson, J.D. (2008) Scanning probe microprobe analysis of mercury and other trace elements in Fe-sulfides from a Kentucky coal. International Journal of Coal Geology, 75, 88–92.Google Scholar

  • Huston, D.L., Sie, S.H., Suter, G.F., Cooke, D.R., and Both, R.A. (1995) Trace elements in sulphide minerals from eastern Australian volcanic-hosted massive sulphide deposits: Part I. Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II. Selenium levels in pyrite: Comparison with 34S values and implications for the source of sulphur in volcanogenic hydrothermal systems. Economic Geology, 90, 1167–1196.Google Scholar

  • Ikramuddin, M., Besse, L., and Nordstrom, P.M. (1986) Thallium in the Carlin-type gold deposit. Applied Geochemistry, 1, 493–502.Google Scholar

  • Ingham, E.S., Cook, N.J., Cliff, J., Ciobanu, C.L., and Huddleston, A. (2014) A combined chemical isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia. Geochimica et Cosmochimica Acta, 125, 440–465.Google Scholar

  • Jamil, N.Y., and Shaw, D. (1994) The diffusion of Mn in CdSe. Semiconductor Science and Technology, 10, 952–958.Google Scholar

  • John Peter, A.L., and Viraraghavan, T. (2005) Thallium: a review of public health and environmental concerns. Environment International, 31, 493–501.Google Scholar

  • Kazantzis, G. (2000) Thallium in the environment and health effects. Environmental Geochemistry and Health, 22, 275–280.Google Scholar

  • Keith, M., Häckel, F., Haase, K.M., Schwartz-Schampera, U., and Klemd, R. (2016) Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geology Reviews, 72, 728–745.Google Scholar

  • Kolker, A. (2012) Minor element distribution in iron disulfides in coal: A geochemical review. International Journal of Coal Geology, 74, 32–43.Google Scholar

  • Kouzmanov, K., Pettke, T., and Heinrich, C.A. (2010) Direct analysis of ore-precipitating fluids: Combined IR microscopy and LA-ICP-MS study of fluid inclusions in opaque ore minerals. Economic Geology, 105, 351–373.Google Scholar

  • Kyle, J.H., Breuer, P.L., Bunney, K.G., Pleysier, R., and May, P.M. (2011) Review of trace toxic elements (Pb, Cd, Hg, As, Sb, Bi, Se, Te) and their deportment in gold processing. Part 1: Mineralogy, aqueous chemistry and toxicity. Hydrometallurgy, 107, 91–100.Google Scholar

  • Large, R.R., Maslennikov, V.V., Robert, F., Danyushevsky, L., and Chang, Z. (2007) Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia. Economic Geology, 102, 1233–1267.Google Scholar

  • Large, R.R., Danyushevsky, L., Hollit, C., Maslennikov, V.V., Meffre, S., Gilbert, S., Bull, S., Scott, R., Emsbo, P., Thomas, H., Singh, B., and Foster, J. (2009) Gold and trace elements zonation in pyrite using laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Economic Geology, 104, 635–668.Google Scholar

  • Large, R.R., Halpin, J.A., Danyushevsky, L.V., Maslennikov, V.V., Bull, S.W., Long, J.A., Gregory, D.D., Lounejeva, E., Lyons, T.W., Sack, P.J., McGoldrick, P.J., and Calver, C.R. (2014) Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution. Earth and Planetary Science Letters, 389, 209–220.Google Scholar

  • Lefticariu, L., Blum, J.D., and Gleason, J.D. (2011) Mercury isotopic evidence for multiple mercury sources in coal from the Illinois Basin. Environmental Science and Technology, 45, 1724–1729.Google Scholar

  • Lehner, S.W., Savage, K., and Ayers, J.C. (2006) Vapour growth and characterization of pyrite (FeS2) doped with Ni, Co, and As: Variations in semiconducting properties. Journal of Crystal Growth, 286, 306–317.Google Scholar

  • Lehner, S.W., Newman, N., van Schilfgaarde, M., Bandyopadhyay, S., Savage, K., and Buseck, P. (2012) Defect energy levels and electronic behaviour of Ni-, Co-, and As-doped synthetic pyrite (FeS2). Journal of Applied Physics, 111, 083717.Google Scholar

  • Li, N., Deng, J., Yang, L.-Q., Goldfarb, R.J., Zhang, C., Marsh, E., Lei, S.-B., Koenig, A., and Lowers, H. (2014) Paragenesis and geochemistry of ore minerals in the epizonal gold deposits of the Yangshan gold belt, West Qinling, China. Mineralium Deposita, 49, 427–449.Google Scholar

  • Lockington, J.A., Cook, N.J., and Ciobanu, C.L. (2014) Trace and minor elements in sphalerite from metamorphosed sulphide deposits. Mineralogy and Petrology, 108, 873–890.Google Scholar

  • Marin-Carbonne, J., Rollion-Bard, C., Bekker, A., Rouxexl, O., Agangi, A., Cavalazzi, B., Wohlgemuth-Ueberwasser, C.C., Hofmann, A., and McKeegan, K.D. (2014) Coupled Fe and S isotope variations in pyrite nodules from Archean shale. Earth and Planetary Science Letters, 392, 67–79.Google Scholar

  • Okamoto, H., and Massalski, T.B. (1987) Phase Diagrams of Binary Gold Alloys. ASM International, Ohio.Google Scholar

  • Okrusch, M., Lorenz, J.A., and Weyer, S. (2007) The genesis of sulphide assemblages in the former Wilhelmine mine, Spassart, Bavaria, Germany. Canadian Mineralogist, 45, 723–750.Google Scholar

  • O’Shaughnessy, T.A., Barber, H.D., Thompson, D.A., and Heasell, E.L. (1974) The solid solubility of gold in doped silicon by oxide encapsulation. Journal of Electrochemical Society, 121, 1350–1354.Google Scholar

  • Pačevski, A., Moritz, R., Kouzmanov, K., Marquart, K., Živković, P., and Cvetković, L. (2012) Texture and composition of Pb-bearing pyrite from the Čoka Marin polymetallic deposit, Serbia, controlled by nanoscale inclusions. Canadian Mineralogist, 50, 1–20.Google Scholar

  • Palenik, C.S., Ustunomiya, S., Reich, M., Kesler, S.E., Wang, L., and Ewing, R.C. (2004) “Invisible” gold revealed: Direct imagining of gold nanoparticles in a Carlin-type deposit. American Mineralogist, 89, 1359–1366.Google Scholar

  • Palenova, E.E., Belogub, E.F., Plotinskaya, O.Yu., Novoselov, K.A., Maslennikov, V.V., Kotlyarov, V.A., Blinov, I.A., Kuzmenko, A.A., and Griboyedova, I.G. (2015) Chemical evolution of pyrite at the Kopylovsky and Kavkaz Black shale-hosted gold deposits, Bodaybo District, Russia: Evidence from EMPA and LA-ICP-MS data. Geology of Ore Deposits, 57, 64–84.Google Scholar

  • Parkman, R.H., Charnock, J.M., Bryan, N.D., Livens, F.R., and Vaughan, D.J. (1999) Reactions of copper and cadmium ions in aqueous solution with goethite, lepidocrocite, mackinawite, and pyrite. Americam Mineralogist, 84, 407–419.Google Scholar

  • Pass, H.E. (2010) Breccia-hosted chemical and mineralogical zonation patterns of the northest zone, Mt. Polley Cu-Ag-Au alkali porphyry deposit, British Columbia, Canada. Ph.D. thesis, University of Tasmania, Australia.Google Scholar

  • Pearce, C.I., Pattrick, R.A.D., and Vaughan, D.J. (2006) Electrical and magnetic properties of sulphides. Review in Mineralogy and Geochemistry, 61, 127–180.Google Scholar

  • Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R.B., Friedli, H.R., Leaner, J., Mason, R., Mukherjee, A.B., Stracher, G.B., Streets, D.G., and Telner, K. (2010) Global mercury emissions to the atmosphere from anthropogenic and natural resources. Atmospheric Chemistry and Physics, 10, 5951–5964.Google Scholar

  • Plant, J.A., Bone, J., Voulvoulis, N., Kinniburgh, D.G., Smedley, P.L., Fordyce, F.M., and Klinck, B. (2014) Arsenic and selenium. In H.D. Holland and K.K. Turekain, Eds., Environmental Geochemistry, Treatise on Geochemistry, 11, p. 13–57. Elsevier, Amsterdam.Google Scholar

  • Reich, M., Utsunomiya, S., Kesler, S.E., Wang, L.M., Ewing, R.C., and Becker, U. (2006) Thermal behaviour of metal nanoparticles in geologic materials. Geology, 34, 1033–1036.Google Scholar

  • Reich, M., Kesler, S.E., Utsunomiya, S., Palenik, C.S., Chryssoulis, S.L., and Ewing, R.C. (2005) Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta, 69, 2781–2796.Google Scholar

  • Reich, M., Palacios, C., Chryssoulis, S., Weldt, M., Alvear, M., and Deditius, A. (2010) “Invisible” silver and gold in supergene chalcocite. Geochimica et Cosmochimica Acta, 74, 6157–6173.Google Scholar

  • Reich, M., Deditius, A.P., Chryssoulis, S., Li, J.W., Ma, C.Q., Parada, M.A., Barra, F., and Mittermayr, F. (2013) Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochimica et Cosmochimica Acta, 104, 42–62.Google Scholar

  • Revan, M.K., Genc, Y., Maslennikov, V.V., Maslennikova, S.P., Large, R.R., and Danyushevsky, L.V. (2014) Mineralogy and trace-element geochemistry of sulphide minerals in hydrothermal chimneys from the Upper-Cretaceous BMS deposits of the eastern Pontide orogenic belt (NE Turkey). Ore Geology Reviews, 63, 129–149.Google Scholar

  • Rickard, D., and Luther, G.W. III (2007) Chemistry of iron sulphides. Chemistry Reviews, 107, 514–562.Google Scholar

  • Schackelton, J.M., Spry, P.G., and Bateman, R. (2003) Telluride mineralogy of the Golden Mile deposit Kalgoorlie, Western Australia. Canadian Mineralogist, 41, 1503–1524.Google Scholar

  • Scher, S., Williams-Jones, A.E., and Williams-Jones, G. (2013) Fumarolic activity, acid-sulfate alteration, and high-sulfidation epithermal precious metal mineralization in the crater of Kawah Ijen volcano, Java, Indonesia. Economic Geology, 108, 1099–1118.Google Scholar

  • Schopf, C., Martin, A., Schmidt, M., and Lacopino, D. (2015) Investigation of Au-Hg amalgam formation on substrate-immobilized individual Au nanorods. Journal of Materials Chemistry C, 3, 8865–8872.Google Scholar

  • Scott, R.J., Meffre, S., Woodhead, J., Gilbert, S.E., Berry, R.F., and Emsbo, P. (2009) Development of framboidal pyrite during diagenesis, low-grade regional metamorphism, and hydrothermal alteration. Economic Geology, 104, 1143–1168.Google Scholar

  • Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.Google Scholar

  • Simon, G., Huang, H., Penner-Hahn, J.E., Kesler, S.E., and Kao, L.-S. (1999) Oxidation state of gold and arsenic in gold-bearing arsenian pyrite. American Mineralogist, 84, 1071–1079.Google Scholar

  • Steadman, J.A., Large, R.R., Meffre, S., Olin, P.H., Danyushevsky, L.V., Gregory, D.D., Belousov, I., Louneyeva, E., Ireland, T.R., and Holden, P. (2015) Synsedimentary to early diagenetic gold in black shale-hosted pyrite nodules at the Golden Mile deposit, Kalgoorlie, Western Australia. Economic Geology, 110, 1157–1191.Google Scholar

  • Su, W., Zhang, H., Hu, R., Ge, X., Xia, B., Chen, Y., and Zhu, C. (2012) Mineralogy and geochemistry of gold-bearing arsenian pyrite from Shuiyidong Carlin-type gold deposit, Guizhou, China: Implications for gold depositional processes. Mineralium Deposita, 47, 653–662.Google Scholar

  • Sunagawa, I., and Takahashi, K. (1955) Preliminary report on the relation between o(111) face of pyrite crystals and its minor contents of arsenic. Geological Society of Japan Bulletin, 6, 1–10.Google Scholar

  • Sung, Y.-H., Brugger, J., Ciobanu, C.L., Pring, A., Skinner, W., and Nugus, M. (2009) nvisible gold in pyrite and arsenopyrite from multistage Archean gold deposits: Sunrise Dam Eastern Goldfields Province. Mineralium Deposita, 44, 765–791.Google Scholar

  • Thomas, H.V., Large, R.R., Bull, S.W., Masslennikov, V., Berry, R.F., Fraser, R., Froud, S., and Moye, R. (2011) Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo gold mine, Australia: Insights for ore genesis. Economic Geology, 106, 1–31.Google Scholar

  • Tomkins, A.G., Pattison, D.R.M., and Frost, B.R. (2007) On the initiation of the metamorphic sulfide anatexis. Journal of Petrology, 48, 511–535.Google Scholar

  • Wang, C., Chen, Y., Pan, J., Zhang, P., Qi, J., Liu, J., Li, X., and Wang, J. (2010) Speciation analysis of metals (Tl, Cd and Pb) in Tl-containing pyrite and its cinder from Yunfu Mine, China, by La-ICP-MS with sequential extraction. Chinese Journal of Geochemistry, 29, 113–119.Google Scholar

  • Wood, B.L., and Large, R.R. (2007) Syngenetic gold in western Victoria: Occurrence, age and dimensions. Australian Journal of Earth Science, 54, 711–732.Google Scholar

  • Yang, J., and Ying, J.Y. (2010) Diffusion of gold from the inner core to the surface of Ag2S nanocrystals. Journal of American Chemical Society, 132, 2114–2115.Google Scholar

  • Yudovskaya, M.A., Distler, V.V., Chaplygin, I.V., Mokhov, A.V., Trubkin, N.V., and Gorbacheva, S.A. (2006) Gaseous transport and deposition of gold in magmatic fluid: Evidence from the active Kydryavy volcano, Kurile Islands. Mineralium Deposita, 40, 828–848.Google Scholar

  • Zelenski, M., and Bortnikova, S. (2005) Sublimate speciation at Mutnovsky volcano, Kamchatka. European Journal of Mineralogy, 17, 107–118.Google Scholar

  • Zhang, J.Y., Ren, D., Zheng, C.G., Zeng, R.S., Chou, C.L., and Liu, J. (2002) Trace element abundances in major minerals of Late Permian coals from southwestern Guizhou province, China. International Journal of Coal Geology, 53, 55–64.Google Scholar

  • Zhou, T.F., Fan, Y., Yuan, F., Wu, M.A., Hou, M.J., Voicu, G., Hu, Q.H., Zhang, Q.M., and Yue, S.C. (2005) A preliminary geological and geochemical study of the Xiangquan thallium deposit, eastern China: The world’s first thallium-only mine. Mineralogy and Petrology, 85, 243–251.Google Scholar

  • Zhou, T., Fan, Y., Yuan, F., Cooke, D., Zhang, X., and Li, L. (2008) A preliminary investigation and evaluation of the thallium environmental impacts of the unmined Xiangquan thallium-only deposit in Hexian, China. Environmental Geology, 54, 131–145.Google Scholar

About the article

Received: 2015-10-21

Accepted: 2016-02-05

Published Online: 2016-06-03

Published in Print: 2016-06-01


Citation Information: American Mineralogist, Volume 101, Issue 6, Pages 1451–1459, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5603.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in