Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2017: 2.645

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 101, Issue 6

Issues

Compositional effects on the solubility of minor and trace elements in oxide spinel minerals: insights from crystal-crystal partition coefficients in chromite exsolution

Vanessa Colás
  • Corresponding author
  • Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, México
  • Universidad de Zaragoza, Departamento de Ciencias de la Tierra, Pedro Cerbuna 12, 50009 Zaragoza, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ José Alberto Padrón-Navarta
  • Géosciences Montpellier, CNRS and University of Montpellier (UMR5243), 34095 Montpellier, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ José María González-Jiménez
  • Department of Geology and Andean Geothermal Center of Excellence (CEGA), Universidad de Chile, Plaza Ercilla no. 803, Santiago, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ William L. Griffin
  • ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC National Key Centre, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Isabel Fanlo
  • Universidad de Zaragoza, Departamento de Ciencias de la Tierra, Pedro Cerbuna 12, 50009 Zaragoza, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Suzanne Y. O’Reilly
  • ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC National Key Centre, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fernando Gervilla
  • Departamento de Mineralogía y Petrología and Instituto Andaluz de Ciencias de la Tierra (Universidad de Granada-CSIC), Facultad de Ciencias, Avda. Fuentenueva s/n, 18002 Granada, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joaquín A. Proenza
  • Departament de Cristal·lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Norman J. Pearson
  • ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC National Key Centre, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Monica P. Escayola
  • IDEAN-CONICET, Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II-1° EP, Office 29, (1428), Buenos Aires, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-03 | DOI: https://doi.org/10.2138/am-2016-5611

Abstract

Chromite from Los Congos and Los Guanacos in the Eastern Pampean Ranges of Córdoba (Argentinian Central Andes) shows homogenous and exsolution textures. The composition of the exsolved phases in chromite approaches the end-members of spinel (MgAl2O4; Spl) and magnetite (Fe2+Fe23+O4; Mag) that define the corners of the spinel prism at relatively constant Cr3+/R3+ ratio (where R3+ is Cr+Al+Fe3+). The exsolution of these phases from the original chromite is estimated to have accounted at ≥600 °C on the basis of the major element compositions of chromite with homogenous and exsolution textures that are in equilibrium with forsterite-rich olivine (Fo95). The relatively large size of the exsolved phases in chromite (up to ca. 200 μm) provided, for the first time, the ability to conduct in situ analysis with laser ablation-inductively coupled plasma-mass spectrometry for a suite of minor and trace elements to constrain their crystal-crystal partition coefficient between the spinel-rich and magnetite-rich phases (DiSpl/Mag). Minor and trace elements listed in increasing order of compatibility with the spinel-rich phase are Ti, Sc, Ni, V, Ge, Mn, Cu, Sn, Co, Ga, and Zn. DiSpl/Mag values span more than an order of magnitude, from DTiSpl/Mag = 0.30 ± 0.06 to DZnSpl/Mag= 5.48 ± 0.63. Our results are in remarkable agreement with data available for exsolutions of spinel-rich and magnetite-rich phases in other chromite from nature, despite their different Cr3+/R3+ ratio. The estimated crystal-crystal partitioning coefficients reflect the effect that crystal-chemistry of the exsolved phases from chromite imposes on all investigated elements, excepting Cu and Sc (and only slightly for Mn). The observed preferential partitioning of Ti and Sc into the magnetite-rich phase is consistent with high-temperature chromite/melt experiments and suggests a significant dependence on Fe3+ substitution in the spinel structure. A compositional effect of major elements on Ga, Co, and Zn is observed in the exsolved phases from chromite but not in the experiments; this might be due to crystal-chemistry differences along the MgFe–1-Al2Fe23+ exchange vector, which is poorly covered experimentally. This inference is supported by the strong covariance of Ga, Co, and Zn observed only in chromite from layered intrusions where this exchange vector is important. A systematic increase of Zn and Co coupled with a net decrease in Ga during hydrous metamorphism of chromitite bodies cannot be explained exclusively by compositional changes of major elements in the chromite (which are enriched in the magnetite component). The most likely explanation is that the contents of minor and trace elements in chromite from metamorphosed chromitites are controlled by interactions with metamorphic fluids involved in the formation of chlorite.

Key words: Chromite exsolution; spinel-magnetite; partition coefficient; minor and trace elements; hydrous metamorphism

Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.

References cited

  • Abzalov, M.Z. (1998) Chrome-spinels in gabbro-wehrlite intrusions of the Pechenga area, Kola Peninsula, Russia: Emphasis on alteration features. Lithos, 43, 109–134.Google Scholar

  • Ahmed, A.H., Helmy, H.M., Arai, S., and Yoshikawa, M. (2008) Magmatic unmixing in spinel from late Precambrian concentrically-zoned mafic-ultramafic intrusions, Eastern Desert, Egypt. Lithos, 104, 85–98.Google Scholar

  • Akmaz, R.M., Uysal, I., and Saka, S. (2014) Compositional variations of chromite and solid inclusions in ophiolitic chromitites from the southeastern Turkey: Implications for chromitite genesis. Ore Geology Reviews, 58, 208–224.Google Scholar

  • Appel, C., Appel, P., and Rollinson, H. (2002) Complex chromite textures reveal the history of an early Archaean layered ultramafic body in West Greenland. Mineralogical Magazine, 66, 1029–1041.Google Scholar

  • Bach, W., Paulick, H., Garrido, C.J., Ildefonse, B., Meurer, W.P., and Humphris, S.E. (2006) Unraveling the sequence of serpentinization reactions: Petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophysical Research Letters, 33, L13306.Google Scholar

  • Barnes, S.J. (1998) Chromite in komatiites, 1. Magmatic controls on crystallization and composition. Journal of Petrology, 39, 1689–1720.Google Scholar

  • Barnes, S.J. (2000) Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. Journal of Petrology, 41, 387–409.Google Scholar

  • Barnes, S.J., and Roeder, P.L. (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42, 2279–2302.Google Scholar

  • Biagioni, C., and Pasero, M. (2014) The systematics of the spinel-type minerals: An overview. American Mineralogist, 99, 1254–1264.Google Scholar

  • Blundy, J., and Wood, B. (1994) Prediction of crystal melt partition coefficients from elastic moduli. Nature, 372, 452–454.Google Scholar

  • Bosi, F., Hålenius, U., D’Ippolito, V., and Andreozzi, G.B. (2012) Blue spinel crystals in the MgAl2O4-CoAl2O4 series: Part II. Cation ordering over short-range and long-range scales. American Mineralogist, 97, 1834–1840.Google Scholar

  • Burkhard, D.J.M. (1993) Accessory chromium spinels: Their coexistence and alteration in serpentinites. Geochimica et Cosmochimica Acta, 57, 1297–1306.Google Scholar

  • Candia, M.A.F., and Gaspar, J.C. (1997) Chromian spinels in metamorphosed ultramafic rocks from Mangabal I and II complexes, Goiás, Brazil. Mineralogy and Petrology, 60, 27–40.Google Scholar

  • Canil, D. (1999) Vanadium partitioning between orthopyroxene, spinel and silicate melt and the redox states of mantle source regions for primary magmas. Geochimica et Cosmochimica Acta, 63, 557–572.Google Scholar

  • Canil, D. (2002) Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth and Planetary Science Letters, 195, 75–90.Google Scholar

  • Colás, V (2015) Modelos de alteración de cromititas ofiolíticas durante el metamorfismo, 240 p. Ph.D. thesis, Univerisidad de Zaragoza, Spain.Google Scholar

  • Colás, V., Gonzalez-Jimenez, J.M., Griffin, W.L., Fanlo, I., Gervilla, F., O’Reilly, S.Y., Pearson, N.J., Kerestedjian, T., and Proenza, J.A. (2014) Fingerprints of metamorphism in chromite: New insights from minor and trace elements. Chemical Geology, 389, 137–152.Google Scholar

  • Connolly, H.C. Jr., and Burnett, D. (2003) On type B CAI formation: experimental constraints on fO2 variations in spinel minor element partitioning and reequilibration effects. Geochimica et Cosmochimica Acta, 67, 4429–4434.Google Scholar

  • Cremer, V. (1969) Die Mischkristallbildung im System Chromit-Magnetit-Hercynit zwischen 1000 und 500°C. Jahrbuch für Mineralogie Abhandlungen, 111, 184–205.Google Scholar

  • Dare, S.A.S., Pearce, J.A., McDonald, I., and Styles, M.T. (2009) Tectonic discrimination of peridotites using fO2-Cr# and Ga–Ti–FeIII systematics in chrome-spinel. Chemical Geology, 261, 199–216.Google Scholar

  • Droop, G. (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51, 431–435.Google Scholar

  • Dunitz, J., and Orgel, L. (1957) Electronic properties of transition-metal oxides-I: Distortions from cubic symmetry. Journal of Physics and Chemistry of Solids, 3, 20–29.Google Scholar

  • Eales, H., Wilson, A., and Reynolds, I. (1988) Complex exsolved spinels in layered intrusions within an obducted ophiolite in the Natal-Namaqua mobile belt. Mineralium Deposita, 23, 150–157.Google Scholar

  • Escayola, M., Proenza, J.A., Schalamuk, A., and Cábana, C. (2004) La secuencia ofiolítica de la faja ultramáfica de Sierras Pampeanas de Córdoba, Argentina. In E. Pereira, R. Castroviejo and F. Ortiz, Eds., Complejos ofiolíticos en Iberoamérica: guías de prospección para metales preciosos, 133–155. Proyecto XIII.1-CYTED, Madrid-EspañaGoogle Scholar

  • Evans, B.W., and Frost, B.R. (1975) Chrome-spinel in progressive metamorphism-a preliminary analysis. Geochimica et Cosmochimica Acta, 39, 959–972.Google Scholar

  • Forster, R., and Hall, E. (1965) A neutron and X ray diffraction study of ulvöspinel, Fe2TiO4. Acta Crystallographica, 18, 857–862.Google Scholar

  • Fregola, R.A., Bosi, F., Skogby, S., and Hålenius, U. (2012) Cation ordering over short-range and long-range scales in the MgAl2O4-CuAl2O4 series. American Mineralogist, 97, 1821–1827.Google Scholar

  • Frost, B.R., and Beard, J.S. (2007) On silica activity and serpentinization. Journal of Petrology, 48, 1351–1368.Google Scholar

  • Gao, S., Liu, X., Yuan, H., Hattendorf, B., Günther, D., Chen, L., and Hu, S. (2002) Determination of forty two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards Newsletter, 26, 181–196.Google Scholar

  • Gargiulo, M., Bjerg, E., and Mogessie, A. (2013) Spinel group minerals in metamorphosed ultramafic rocks from Río de Las Tunas belt, Central Andes, Argentina. Geologica Acta, 11, 133–148.Google Scholar

  • Garuti, G., Pushkarev, E.V., Zaccarini, F., Cabella, R., and Anikina, E. (2003) Chromite composition and platinum-group mineral assemblage in the Uktus Uralian-Alaskan-type complex (Central Urals, Russia). Mineralium Deposita, 38, 312–326.Google Scholar

  • Gervilla, F., Padrón-Navarta, J., Kerestedjian, T., Sergeeva, I., González-Jiménez, J., and Fanlo, I. (2012) Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane serpentinite, Eastern Rhodopes, SE Bulgaria: a two-stage process. Contributions to Mineralogy and Petrology, 164, 643–657.Google Scholar

  • González-Jiménez, J.M., Augé, T., Gervilla, F., Bailly, L., Proenza, J.A., and Griffin, W.L. (2011) Mineralogy and geochemistry of platinum-rich chromitites from the mantle-crust transition zone at Ouen Island, New Caledonia ophiolite. Canadian Mineralogist, 49, 1549–1569.Google Scholar

  • González-Jiménez, J.M., Locmelis, M., Belousova, E., Griffin, W.L., Gervilla, F., Kerestedjian, T.N., O’Reilly, S.Y., Pearson, N.J., and Sergeeva, I. (2015) Genesis and tectonic implications of podiform chromitites in the metamorphosed ultramafic massif of Dobromirtsi (Bulgaria). Gondwana Research, 27, 555–574.Google Scholar

  • Griffin, W., Powell, W., Pearson, N., and O’Reilly, S. (2008) GLITTER: data reduction software for laser ablation ICP-MS. In P. Sylvester, Ed., Laser Ablation-ICP-MS in the Earth Sciences. Mineralogical Association of Canada Short Course Series, 40, 204–207.Google Scholar

  • Hill, R.J., Craig, J.R., and Gibbs, G. (1979) Systematics of the spinel structure type. Physics and Chemistry of Minerals, 4, 317–339.Google Scholar

  • Horn, I., Foley, S.F., Jackson, S.E,. and Jenner, G.A. (1994) Experimentally determined partitioning of high field strength-and selected transition elements between spinel and basaltic melt. Chemical Geology, 117, 193–218.Google Scholar

  • Irving, A.J. (1978) A review of experimental studies of crystal/liquid trace element partitioning. Geochimica et Cosmochimica Acta, 42, 743–770.Google Scholar

  • Jan, M., Khan, M., and Windley, B. (1992) Exsolution in Al-Cr-Fe+3-rich spinels from the Chilas mafic-ultramafic complex, Pakistan. American Mineralogist, 77, 1074–1074.Google Scholar

  • Kamenetsky, V.S., Crawford, A.J., and Meffre, S. (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42, 655–667.Google Scholar

  • Krause, J., Brügmann, G.E., and Pushkarev, E.V. (2007) Accessory and rock forming minerals monitoring the evolution of zoned mafic–ultramafic complexes in the Central Ural Mountains. Lithos, 95, 19–42.Google Scholar

  • Lavina, B., Salviulo, G., and Della Giusta, A. (2002) Cation distribution and structure modelling of spinel solid solutions. Physics and Chemistry of Minerals, 29, 10–18.Google Scholar

  • Lee, C.A., Brandon, A.D., and Norman, M. (2003) Vanadium in peridotites as a proxy for paleo-fO2 during partial melting: prospects, limitations, and implications. Geochimica et Cosmochimica Acta, 67, 3045–3064.Google Scholar

  • Lee, C.A., Leeman, W.P., Canil, D., and Li, Z.A. (2005) Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. Journal of Petrology, 46, 2313–2336.Google Scholar

  • Li, C., Ripley, E.M., Tao, Y., and Mathez, E.A. (2008) Cr-spinel/olivine and Cr-spinel/liquid nickel partition coefficients from natural samples. Geochimica et Cosmochimica Acta, 72, 1678–1684.Google Scholar

  • Lindsley, D.H. (1976) The crystal-chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides. Reviews in Mineralogy, 3, L1–L60.Google Scholar

  • Locmelis, M., Pearson, N.J., Barnes, S.J., and Fiorentini, M.L. (2011) Ruthenium in komatiitic chromite. Geochimica et Cosmochimica Acta, 75, 3645–3661.Google Scholar

  • Loferski, P.J., and Lipin, B.R. (1983) Exsolution in metamorphosed chromite from the Red Lodge district, Montana. American Mineralogist, 68, 777–789.Google Scholar

  • Mallmann, G., and O’Neill, H.St.C. (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology, 50, 1765–1794.Google Scholar

  • Martino, R.D., Guereschi, A.B., and Anzil, P.A. (2010) Metamorphic and tectonic evolution at 31° 36′ S across a deep crustal zone from the Sierra Chica of Córdoba, Sierras Pampeanas, Argentina. Journal of South American Earth Sciences, 30, 12–28.Google Scholar

  • McClure, D.S. (1957) The distribution of transition metal cations in spinels. Journal of Physics and Chemistry of Solids, 3, 311–317.Google Scholar

  • Mondal, S.K., Ripley, E.M., Li, C., and Frei, R. (2006) The genesis of Archaean chromitites from the Nuasahi and Sukinda massifs in the Singhbhum Craton, India. Precambrian Research, 148, 45–66.Google Scholar

  • Muan, A. (1975) Phase relations in chromium oxide-containing systems at elevated temperatures. Geochimica et Cosmochimica Acta, 39, 781–802.Google Scholar

  • Muller, O., and Roy, R. (1974) The Major Ternary Structural Families. Springer, Berlin.Google Scholar

  • Muir, J., and Naldrett, A. (1973) A natural occurrence of two-phase chromium-bearing spinels. Canadian Mineralogist, 11, 930–939.Google Scholar

  • Mukherjee, R., Mondal, S.K., Rosing, M.T., and Frei, R. (2010) Compositional variations in the Mesoarchean chromites of the Nuggihalli schist belt, Western Dharwar Craton (India): Potential parental melts and implications for tectonic setting. Contributions to Mineralogy and Petrology, 160, 865–885.Google Scholar

  • Mukherjee, R., Mondal, S.K., González-Jiménez, J.M., Griffin, W.L., Pearson, N.J., and O’Reilly, S.Y. (2015) Trace-element fingerprints of chromite, magnetite and sulfides from the 3.1 Ga ultramafic–mafic rocks of the Nuggihalli greenstone belt, Western Dharwar craton (India). Contributions to Mineralogy and Petrology, 169, 1–23.Google Scholar

  • Nielsen, R.L., and Beard, J.S. (2000) Magnetite–melt HFSE partitioning. Chemical Geology, 164, 21–34.Google Scholar

  • Nielsen, R.L., Forsythe, L.M., Gallahan, W.E., and Fisk, M.R. (1994) Major-and trace-element magnetite-melt equilibria. Chemical Geology, 117, 167–191.Google Scholar

  • Norman, M., Pearson, N., Sharma, A., and Griffin, W. (1996) Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: Instrumental operating conditions and calibration values of NIST glasses. Geostandards Newsletter, 20, 247–261.Google Scholar

  • Norman, M., Griffin, W., Pearson, N., Garcia, M., and O’Reilly, S. (1998) Quantitative analysis of trace element abundances in glasses and minerals: a comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry, proton microprobe and electron microprobe data. Journal of Analytical Atomic Spectrometry, 13, 477–482.Google Scholar

  • O’Neill, H.St.C., and Navrotsky, A. (1983) Simple spinels; crystallographic parameters, cation radii, lattice energies, and cation distribution. American Mineralogist, 68, 181–194.Google Scholar

  • Pagé, P., and Barnes, S.J. (2009) Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines ophiolite, Québec, Canada. Economic Geology, 104, 997–1018.Google Scholar

  • Paktunc, A., and Cabri, L. (1995) A proton-and electron-microprobe study of gallium, nickel and zinc distribution in chromian spinel. Lithos, 35, 261–282.Google Scholar

  • Perinelli, C., Bosi, F., Andreozzi, G.B., Conte, A.M., and Armienti, P. (2014) Geothermometric study of Cr-rich spinels of peridotite mantle xenoliths from northern Victoria Land (Antarctica). American Mineralogist, 99, 839–846.Google Scholar

  • Prabhakar, N., and Bhattacharya, A. (2013) Origin of zoned spinel by coupled dissolution–precipitation and inter-crystalline diffusion: evidence from serpentinized wehrlite, Bangriposi, Eastern India. Contributions to Mineralogy and Petrology, 166, 1047–1066.Google Scholar

  • Price, G.D., Price, S.L., and Burdett, J.K. (1982) The factors influencing cation site-preferences in spinels a new mendelyevian approach. Physics and Chemistry of Minerals, 8, 69–76.Google Scholar

  • Proenza, J., Zaccarini, F., Escayola, M., Cábana, C., Schalamuk, A., and Garuti, G. (2008) Composition and textures of chromite and platinum-group minerals in chromitites of the western ophiolitic belt from Pampean Ranges of Córdoba, Argentina. Ore Geology Reviews, 33, 32–48.Google Scholar

  • Purvis, A., Nesbitt, R., and Hallberg, J. (1972) The geology of part of the Carr Boyd Rocks Complex and its associated nickel mineralization, Western Australia. Economic Geology, 67, 1093–1113.Google Scholar

  • Rapela, C., Pankhurst, R., Casquet, C., Baldo, E., Saavedra, J., Galindo, C., and Fanning, C. (1998) The Pampean Orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Córdoba. Geological Society, London, Special Publications, 142, 181–217.Google Scholar

  • Rasband, W. (2007) WS 1997–2007 ImageJ. U.S. National Institutes of Health, Bethesda, Maryland.

  • Righter, K., Campbell, A., Humayun, M., and Hervig, R. (2004) Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts. Geochimica et Cosmochimica Acta, 68, 867–880.Google Scholar

  • Righter, K., Leeman, W., and Hervig, R. (2006) Partitioning of Ni, Co and V between spinel-structured oxides and silicate melts: Importance of spinel composition. Chemical Geology, 227, 1–25.Google Scholar

  • Sack, R.O., and Ghiorso, M.S. (1991) Chromian spinels as petrogenetic indicators: Thermodynamics and petrological applications. American Mineralogist, 76, 827–847.Google Scholar

  • Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, 32, 751–767.Google Scholar

  • Singh, A.K., and Singh, R.B. (2013) Genetic implications of Zn-and Mn-rich Cr-spinels in serpentinites of the Tidding Suture Zone, eastern Himalaya, NE India. Geological Journal, 48, 22–38.Google Scholar

  • Stevanović, V., d’Avezac, M., and Zunger, A. (2010) Simple point-ion electrostatic model explains the cation distribution in spinel oxides. Physical Review Letters, 105, 075501.Google Scholar

  • Tamura, A.N., and Arai, S. (2004) Inhomogeneous spinel in chromitite from the Iwanai-dake peridotite complex, Hokkaido, Japan: Variations of spinel unmixing texture and chemical composition. Science reports of Kanazawa University, 48, 9–29.Google Scholar

  • Tamura, A.N., and Arai, S. (2005) Exsolved spinel in chromitite from the Iwanai-dake peridotite complex, Hokkaido, Japan: A reaction between peridotite and highly oxidized magma in the mantle wedge. American Mineralogist, 90, 473–480.Google Scholar

  • Toplis, M.J., and Corgne, A. (2002) An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contributions to Mineralogy and Petrology, 144, 22–37.Google Scholar

  • Turnock, A., and Eugster, H. (1962) Fe-Al oxides: Phase relationships below 1000°C. Journal of Petrology, 3, 533–565.Google Scholar

  • van der Veen, A., and Maaskant, P. (1995) Chromian spinel mineralogy of the Staré Ransko gabbro-peridotite, Czech Republic, and its implications for sulfide mineralization. Mineralium Deposita, 30, 397–407.Google Scholar

  • Wechsler, B.A., and Von Dreele, R. (1989) Structure refinements of Mg2TiO4, MgTiO3 and MgTi2O5 by time-of-flight neutron powder diffraction. Acta Crystallographica, B45, 542–549.Google Scholar

  • Whitney, D.L., and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.Google Scholar

  • Wijbrans, C., Klemme, S., Berndt, J., and Vollmer, C. (2015) Experimental determination of trace element partition coefficients between spinel and silicate melt: the influence of chemical composition and oxygen fugacity. Contributions to Mineralogy and Petrology, 169, 1–33.Google Scholar

  • Yao, S. (1999) Chemical composition of chromites from ultramafic rocks: application to mineral exploration and petrogenesis, 174 p. Ph.D. thesis, Macquarie University, Sydney, Australia.Google Scholar

  • Zakrzewski, M.A. (1989) Chromian spinels from Kusa, Bergslagen, Sweden. American Mineralogist, 74, 448–455.Google Scholar

  • Zhou, M., Robinson, P.T., Su, B., Gao, J., Li, J., Yang, J., and Malpas, J. (2014) Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone envrionments. Gondwana Research, 26, 262–283.Google Scholar

About the article

Received: 2015-10-26

Accepted: 2016-02-05

Published Online: 2016-06-03

Published in Print: 2016-06-01


Citation Information: American Mineralogist, Volume 101, Issue 6, Pages 1360–1372, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5611.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in