Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 101, Issue 6

Issues

An X-ray magnetic circular dichroism (XMCD) study of Fe ordering in a synthetic MgAl2O4-Fe3O4 (spinel-magnetite) solid-solution series: Implications for magnetic properties and cation site ordering

C. Michael B. Henderson
  • Corresponding author
  • Williamson Research Centre, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, U.K
  • Astec, Daresbury Laboratory, STFC, Warrington WA4 4AD, U.K
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carolyn I. Pearce
  • Williamson Research Centre, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, U.K
  • School of Chemistry and Dalton Nuclear Institute, University of Manchester, Manchester M13 9PL, U.K
  • Pacific Northwest National Laboratory, Richland, Washington 99352, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ John M. Charnock
  • Williamson Research Centre, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, U.K
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Richard J. Harrison / Kevin M. Rosso
  • Williamson Research Centre, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, U.K
  • Pacific Northwest National Laboratory, Richland, Washington 99352, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-03 | DOI: https://doi.org/10.2138/am-2016-5612

Abstract

Fe L2,3-edge XAS and XMCD studies have been used to unravel structural trends in the MgAl2O4–Fe3O4 solid solution where thermodynamic modeling has presented a challenge due to the complex ordering arrangements of the end-members. Partitioning of Fe3+ and Fe2+ between tetrahedral (Td) and octahedral (Oh) sites has been established. In the most Fe-rich samples, despite rapid quenching from a disordered state, FeTd2+ is not present, which matches the ordered, inverse spinel nature of end-member magnetite (Mgt) at room temperature. However, in intermediate compositions Al and Mg substantially replace Fe and small amounts of FeTd2+ are found, stabilized, or trapped by decreasing occurrence of the continuous nearest neighbor Fe–Fe interactions that facilitate charge redistribution by electron transfer. Furthermore, in the composition range ~Mgt0.4–0.9, XAS and XMCD bonding and site occupancy data suggest that nanoscale, magnetite-like Fe clusters are present. By contrast, at the spinel-rich end of the series, Mgt0.17 and Mgt0.23 have a homogeneous long-range distribution of Fe, Mg, and Al. These relationships are consistent with the intermediate and Fe-rich samples falling within a wide solvus in this system such that the Fe-clusters occur as proto-nuclei for phases that would exsolve following development of long-range crystalline order during slow cooling.

Unit-cell edges calculated from the spectroscopy-derived site occupancies show excellent agreement with those measured by X-ray powder diffraction on the bulk samples. Calculated saturation magnetic moments (Ms) for the Fe-rich samples also show excellent agreement with measured values but for the most Mg-rich samples are displaced to slightly higher values; this displacement is due to the presence of abundant Mg and Al disrupting the anti-parallel alignment of electron spins for Fe atoms.

Key words: MgAl2O4-Fe3O4 spinel solid solutions; Fe L2,3 X-ray absorption spectroscopy; Fe L2,3 X-ray magnetic circular dichroism; Mg and Fe K-edge extended X-ray absorption fine structure spectroscopy; octahedral and tetrahedral site occupancies; calculated unit-cell parameters; calculated magnetic moments; spinel-magnetite solvus; hypothetical high-temperature ordering model

Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.

References cited

  • Andreozzi, G.B., and Lucchesi, S.G. (2002) Intersite distribution of Fe2+ and Mg in spinel (sensu strico)—hercynite series by single-crystal X-ray diffraction. American Mineralogist, 87, 1113–1120.Google Scholar

  • Arenholz, E., and Prestemon, S.O. (2005) Design and performance of an eight-pole resistive magnet for soft X-ray magnetic dichroism measurements. Review Scientific Instruments, 76, 083908.Google Scholar

  • Bahgat, A.A., Fayek, M.K., Hamalaway, A.A., and Eissa, N.A. (1980) The influence of substitution of iron ions on the electron hopping in magnetite. Journal of Physics C: Solid State Physics, 13, 2601–2608.Google Scholar

  • Becker, K.D. (2001) In situ spectroscopy in solid state chemistry. Solid State Ionics, 141-142, 21–30.Google Scholar

  • Berry, A.J., O’Neill, H.St.C., Javasuriya, K.D., Campbell, S.J., and Foran, G.J. (2003) XANES calibrations for the oxidation state of iron in a silicate glass. American Mineralogist, 88, 967–977.Google Scholar

  • Binsted, N. (1998) Daresbury Laboratory EXCURV98 Program.Google Scholar

  • Bowles, J.F.W., Howie, R.A., Vaughan, D.J., and Zussman, J. (2011) Rock Forming Minerals, vol 5A: Non-silicates: Oxides, Hydroxides and Sulphides. The Geological Society, London, 920pp.Google Scholar

  • Brown, G.E. Jr., Calas, G., Waychunas, G.A., and Petiau, J. (1995) X-ray absorption spectroscopy and its applications in mineralogy and geochemistry. Reviews in Mineralogy, 18, 431–512.Google Scholar

  • Byrne, J.M., Coker, V.S., Moise, S., Wincott, P.L., Vaughan, D.J., Tuna, F., Arenholz, E., van der Laan, G., Pattrick, R.A.D., Lloyd, J.R., and Telling, N.D. (2013) Controlled cobalt doping in biogenic magnetite nanoparticles. Journal Royal Society Interface, 10, 20130134.Google Scholar

  • Carbonin, S., Russo, U., and Della Giusta, A. (1996) Cation distribution in some natural spinels from X-ray diffraction and Mössbauer spectroscopy. Mineralogical Magazine, 60, 355–368.Google Scholar

  • Cressey, G., Henderson, C.M.B., and van der Laan, G. (1993) Use of L-edge X-ray absorption spectroscopy to characterize multiple valence states of 3d transition metals; a new probe for mineralogical and geochemical research. Physics and Chemistry of Minerals, 20, 111–119.Google Scholar

  • Della Giusta, A., Carbonin, S., and Ottonello, G. (1996) Temperature-dependent disorder in a natural Mg-Al-Fe2+-Fe3+–spinel. Mineralogical Magazine, 60, 603–616.Google Scholar

  • Dieckmann, R., and Schmalzried, H. (1977a) Defects and cation diffusion in magnetite (I). Berichte der Bunsen Gesellschaft, 81, 344–347.Google Scholar

  • Dieckmann, R., and Schmalzried, H. (1977b) Defects and cation diffusion in magnetite (II). Berichte der Bunsen Gesellschaft, 81, 414–419.Google Scholar

  • Dieckmann, R., Witt, C.A., and Mason, T. (1983) Defects and cation diffusion in magnetite (V): Electrical conduction, cation distribution and point defects in Fe3–dO4. Berichte der Bunsengesselschaft für physikalische Chemie, 87, 495–503.Google Scholar

  • Doriguetto, A.C., Fernandes, N.G., Persiano, A.I.C., Filho, E.N., Grenèche, J.M., and Fabris, J.D. (2003) Characterization of a natural magnetite. Physics and Chemistry of Minerals, 30, 249–255.Google Scholar

  • Droop, G.T.R. (1987) A general equation for estimating Fe3+ concentrations in ferro-magnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51, 431–435.Google Scholar

  • Eisenberger, P., and Brown, G.S. (1979) The study of disordered systems by EXAFS: Limitations. Solid State Communications, 29, 481–484.Google Scholar

  • Fleet, M.E. (1981) The structure of magnetite. Acta Crystallographica, B37, 917–920.Google Scholar

  • Fleet, M.E. (1982) The structure of magnetite; defect structure II. Acta Crystallographica, B38, 1718–1723.Google Scholar

  • Gilbert, B., Katz, J.E., Denlinger, J.D., Yin, Y., Falcone, R., and Waychunas, G.A. (2010) Soft X-ray spectroscopy study of the electronic structure of oxidized and partially oxidised magnetite nanoparticles. Journal of Physical Chemistry, 114, 21994–22001.Google Scholar

  • Goering, E., Gold, S., Lafkioti, M., and Schütz, G. (2006) Vanishing Fe 3d orbital moments in single-crystalline magnetite. Europhysics Letters, 73, 97–103.Google Scholar

  • Goodenough, J.B., and Loeb, A.L. (1955) Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in spinels. Physical Review, 98, 391–408.Google Scholar

  • Gota, S., Gautier-Soyer, M., and Sacchi, M. (2000) Fe 2p absorption in magnetic oxides: Quantifying angular-dependent saturation effects. Physical Review B, 62, 4187–4190.Google Scholar

  • Graf, C., Goroncy, C., Stumpf, P., Weschke, E., Boeglin, C., Ronneburg, H., and Rȕhl, E. (2015) Local magnetic and electronic structure of the surface region of postsynthetic oxidized iron oxide nanoparticles for magnetic resonance imaging. Journal of Physical Chemistry, 119, 19404–19414.Google Scholar

  • Gunjakar, J.L., More, A.M., Gurav, C.D., and Lokhande, C.D. (2008) Chemical synthesis of spinel nickel ferrite (NiFe2O4) nano-sheets. Applied Surface Science, 254, 5844–5848.Google Scholar

  • Gurman, S.J., Binsted, N., and Ross, I. (1984) A rapid, exact, curved-wave theory for EXAFS calculations. Journal Physics C, 17, 143–151.Google Scholar

  • Harrison, R.J. (1997) Magnetic properties of the magnetite-spinel solid solution: Curie temperatures, magnetic susceptibilities and cation ordering. Ph.D. thesis, University of Cambridge, U.K.Google Scholar

  • Harrison, R.J., and Putnis, A. (1995) Magnetic properties of the magnetite-spinel solid solution: Saturation magnetization and cation distributions. American Mineralogist, 80, 213–221.Google Scholar

  • Harrison, R.J., and Putnis, A. (1996) Magnetic properties of the magnetite-spinel solid solution: Curie temperatures, magnetic susceptibilities, and cation ordering. American Mineralogist, 81, 375–384.Google Scholar

  • Harrison, R.J., and Putnis, A. (1997a) Interaction between exsolution microstructures and magnetic properties of the magnetite-spinel solid solution. American Mineralogist, 82, 131–142.Google Scholar

  • Harrison, R.J., and Putnis, A. (1997b) The coupling between magnetic and cation ordering: a macroscopic approach. European Journal of Mineralogy, 9, 1115–1130.Google Scholar

  • Harrison, R.J., and Putnis, A. (1999) The magnetic properties and crystal chemistry of oxide spinel solid solutions. Surveys in Geophysics, 19, 461–520.Google Scholar

  • Harrison, R.J., Redfern, S.A.T., and O’Neill, H.St.C. (1998) The temperature dependence of the cation distribution in synthetic hercynite (FeAl2O4) from in-situ neutron refinements. American Mineralogist, 83, 1092–1099.Google Scholar

  • Harrison, R.J., Dove, M.T., Knight, K.S., and Putnis, A. (1999) In-situ diffraction study of non-convergent cation ordering in the (Fe3O4)1–x(MgAl2O4)x spinel solid solution. American Mineralogist, 84, 555–563.Google Scholar

  • Henderson, C.M.B., Knight, K.S., Redfern, S.A.T., and Wood, B.J. (1996) High-temperature studies of octahedral cation exchange in olivine by neutron powder diffraction. Science, 271, 1713–1715.Google Scholar

  • Henderson, C.M.B., Charnock, J.M., and Plant, D.A. (2007) Cation occupancies in Mg, Co, Ni, Zn, Al ferrite spinels: A multi-element study. Journal of Physics: Condensed Matter, 19, 1–25.Google Scholar

  • Hill, R.J., Craig, J.R., and Gibbs, G.V. (1979) Systematics of the spinel structure type. Physics and Chemistry of Minerals, 4, 317–349.Google Scholar

  • Holland, T.J.B., and Redfern, S.A.T. (1997) Unit-cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 65–77.Google Scholar

  • Huberty, J.M., Konishi, H., Heck, P.R., Fournelle, J.H., Valley, J.W., and Xu, H. (2012) Silician magnetite from the Dales Gorge Member of the Brockamn Iron Formation, Hamersley Group, Western Australia. American Mineralogist, 97, 26–37.Google Scholar

  • Ildefonse, Ph., Coala, G., Flank, A.M., and Lagarde, P. (1995) Low Z elements (Mg, Al, and Si) K-edge absorption spectroscopy in minerals and disordered systems. Nuclear Instruments Methods Physics, B, 97, 172–175.Google Scholar

  • Kuiper, P., Searle, B.G., Duda, L.-C., Wolf, R.M., and van der Zaag, P.J. (1997) Fe L2,3 linear and circular dichroism of Fe3O4. Journal of Electron Spectroscopy and Related Phenomena, 86, 107–113.Google Scholar

  • Lavina, B., Salviulo, G., and Della Giusta, A. (2002) Cation distribution and structure modelling of spinel solid solutions. Physics and Chemistry of Minerals, 29, 10–18.Google Scholar

  • Lenglet, M. (2004) Iono-covalent character of the metal–oxygen bonds in oxides: a comparison of experimental and theoretical data. Active and Passive Electronic Components, 27, 1–60.Google Scholar

  • Li, D., Peng, M., and Murata, T. (1999) Coordination and local structure of magnesium in silicate minerals and glasses: Mg K-edge XANES study. Canadian Mineralogist, 37, 199–206.Google Scholar

  • Lilova, K.I., Xu, F., Rosso, K.M., Pearce, C.I., Kamali, S., and Navrotsky, A. (2012) Oxide solution calorimetry of Fe3+-bearing oxides and application to the magnetite-maghemite (Fe3O4-Fe8/3O4) system. American Mineralogist, 97, 164–175.Google Scholar

  • Lindsley, D.H. (1976) The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides. Oxide Minerals, Mineralogical Society of America Short Course Notes, 3, L1–60.Google Scholar

  • Liu, C., Zou, B., Rondinone, A.J., and Zhang, J. (2000) Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. Journal American Chemical Society, 122, 6263–6267.Google Scholar

  • Marco, J.F., Gancedo, R., Gracia, M., Gautier, J.L., Rios, E.I., Palmer, H.M., Greaves, C., and Berry, F.J. (2001) Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4. Journal of Materials Chemistry, 11, 3087–3093.Google Scholar

  • Marshall, C.P., and Dollase, W.A. (1984) Cation arrangement in iron-zinc-chromium spinel oxides. American Mineralogist, 69, 928–936.Google Scholar

  • Martignago, F., Andreozzi, G.B., and Dal Negro, A. (2006) Thermodynamics and kinetics of cation ordering in natural and synthetic Mg(Al,Fe3+)2O4 spinels from in situ high-temperature X ray diffraction. American Mineralogist, 91, 306–312.Google Scholar

  • Mattioli, G.S., and Wood, B.J. (1988) Magnetite activities across the MgAl2O4–Fe3O4 spinel join with application to the thermobarometric estimates of upper mantle oxygen fugacity. Contributions to Mineralogy and Petrology, 98, 148–162.Google Scholar

  • Nakajima, R., Stöhr, J., and Idzerda, Y.U. (1999) Electron-yield saturation effects in L-edge X-ray magnetic circular dichroism spectra of Fe, Co and Ni. Physical Review B, 59, 6421–6429.Google Scholar

  • Nakatsuka, A., Ueno, H., Nakayama, N., Mizota, T., and Maekawa, H. (2004) Single-crystal X-ray diffraction study of cation distribution in MgAl2O4-MgFe2O4 spinel solid solution. Physics and Chemistry of Minerals, 31, 278–287.Google Scholar

  • Navrotsky, A., and Kleppa, O.J. (1968) Thermodynamics of formation of simple spinels. Journal of Inorganic and Nuclear Chemistry, 30, 479–498.Google Scholar

  • Néel, L. (1955) Some aspects of rock magnetism. Advances in Physics, 4, 191–243.Google Scholar

  • Nell, J., and Wood, B.J. (1989) High-temperature cation distributions in Fe3O4-MgAl2O4-MgFe2O4-FeAl2O4 spinels from thermopower and conductivity measurements. American Mineralogist, 74, 339–351.Google Scholar

  • Nell, J., Wood, B.J., and Mason, T.O. (1989) Thermodynamic properties in a multicomponent solid solution involving cation disorder: Fe3O4–MgAl2O4–MgFe2O4–FeAl2O4. American Mineralogist, 74, 1000–1015.Google Scholar

  • O’Neill, H.St.C., and Navrotsky, A. (1983) Simple spinels: crystallographic parameters, cation radii, lattice energies, and cation distribution. American Mineralogist, 68, 181–194.Google Scholar

  • O’Neill, H.St.C., (1984) Cation distributions and thermodynamic properties of binary spinel solid solutions. American Mineralogist, 69, 733–753.Google Scholar

  • O’Neill, H.St.C., Annersten, H., and Virgo, D. (1992) The temperature dependence of the cation distribution in magnesioferrite (MgFe2O4) from powder XRD structural refinements and Mössbauer spectroscopy. American Mineralogist, 77, 725–740.Google Scholar

  • Palin, E.J., and Harrison, R.J. (2007) A computational investigation of cation ordering phenomena in the binary spinel system MgAl2O4–FeAl2O4. Mineralogical Magazine, 71, 611–624.Google Scholar

  • Parker, R., and Tinsley, C.J. (1976) Electrical conduction in magnetite. Physica Status Solidi a, 88, 189–194.Google Scholar

  • Pattrick, R.A.D., van der Laan, G., Henderson, C.M.B., Kuiper, P., Dudzik, E., and Vaughan, D.J. (2002) Cation site occupancy in spinel ferrites studied by X ray magnetic circular dichroism: Developing a method for mineralogists. European Journal of Mineralogy, 14, 1095–1102.Google Scholar

  • Pearce, C.I., Henderson, C.M.B., Pattrick, R.A.D., van der Laan, G., and Vaughan, D.J. (2006) Direct determination of cation site occupancies in natural ferrite spinels by L2,3 X ray absorption spectroscopy and X ray magnetic circular dichroism. American Mineralogist, 91, 880–893.Google Scholar

  • Pearce, C.I., Henderson, C.M.B., Telling, N.D., Pattrick, R.A.D., Charnock, J.M., Coker, V.S., Arenholz, E., Tuna, F., and van der Laan, G. (2010) Fe site occupancy in magnetite–ulvöspinel solid solutions: A new approach using X-ray magnetic circular dichroism. American Mineralogist, 95, 425–430.Google Scholar

  • Pearce, C.I., Qafoku, O., Liu, J., Arenholz, E., Heald, S.M., Kukkadapu, R.K., Gorski, C.A., Henderson, C.M.B., and Rosso, K.M. (2012) Synthesis and properties of titanomagnetite (Fe3–xTixO4) nanoparticles: A tunable solid-state Fe(II/III) redox system. Journal of Colloid Interface Science, 387, 24–38.Google Scholar

  • Pellegrin, E., Hagelstein, M., Doyle, S., Moser, H.O., Fuchs, J., Vollath, D., Schuppler, S., James, M.A., Saxena, S.S., Nielsen, L., Rogajanu, O., Sawatzky, G.A., Ferrero, C., Borowski, M., Tjernberg, O., and Brookes, N. (1999) Characterization of nanocrystalline g-Fe3O4 with synchrotron radiation techniques. Physica Status Solidi b, 215, 797–801.Google Scholar

  • Peng, G., van Elp, J., Que, L. Jr., Armstrong, W.H., and Cramer, S.P. (1995) L-edge X-ray absorption and X-ray magnetic circular dichroism of oxygen-bridged dinuclear iron complexes. Journal American Chemical Society, 117, 2515–2519.Google Scholar

  • Redfern, S.A.T., Harrison, R.J., O’Neill, H.St.C., and Wood, D.R.R. (1999) Thermodynamics and kinetics of cation ordering in MgAl2O4 spinel up to 1600 °C from in situ neutron diffraction. American Mineralogist, 84, 299–310.Google Scholar

  • Schedin, F., Hill, E.W., van der Laan, G., and Thornton, G. (2004) magnetic properties of stoichiometric and nonstoichiometric ultrathin Fe3O4(111) films on Al2O3(0001). Journal of Applied Physics, 96, 1165–1169.Google Scholar

  • Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.Google Scholar

  • Tiano, A.L., Papaefthymiou, G.C., Lewis, C.S., Han, J., Zhang, C., Li, Q., Shi, C., Abeykoon, A.M.M., Billinge, S.J.L., Stach, E., Thomas, J., Guerro, K., Munayco, J., Scorzelli, R.B., Burnham, P., Viescas, A.J., and Wong, S.S. (2015) Correlating size and composition-dependent effects with magnetic, Mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles. Chemistry of Materials, 27, 3572–3592.Google Scholar

  • Trcera, N., Cabaret, D., Rossano, S., Farges, F., Flank, An.-M., and Lagarde, P. (2009) Mg K-edge XANES spectra in crystals and oxide glasses: Experimental vs. theoretical approaches. Physics and Chemistry of Minerals, 36, 241–257.Google Scholar

  • Uchida, H., Lavina, B., Downs, R.T., and Chesley, J. (2005) Single-crystal X ray diffraction of spinels from the San Carlos Volcanic Field, Arizona: Spinel as a geothermometer. American Mineralogist, 90, 1900–1908.Google Scholar

  • van der Laan, G., and Figueroa, A.L. (2014) X-ray magnetic circular dichroism–A valuable tool to study magnetism. Coordination Chemistry Reviews, 277–278, 95–129.Google Scholar

  • van der Laan, G., and Kirkman, I.W. (1992) The 2p absorption spectra of 3d transition metal compounds in tetrahedral and octahedral symmetry. Journal of Physics: Condensed Matter, 4, 4189–4204.Google Scholar

  • van der Laan, G., and Thole, B.T. (1991) Strong magnetic X-ray dichroism in 2p absorption spectra of 3d transition metal ions. Physical Review B, 43, 13401–13411.Google Scholar

  • Verwey, E.J., Haayman, P.W., and Romeijn, F.C. (1947) Physical properties and cation arrangement of oxides with spinel structures. II. Electronic conductivity. Journal of Chemical Physics, 15, 181–187.Google Scholar

  • Waerenborgh, J.C., Figueiredo, M.O., Cabral, J.M.P., and Pereira, L.C.J. (1994) Powder XRD structure refinements and 57Fe Mössbauer effect study of synthetic Zn1–xFexAl2O4 (0 < x ≤ 1) spinels annealed at different temperatures. Physics and Chemistry of Minerals, 21, 460–468.Google Scholar

  • Waychunas, G.A. (1991) Crystal chemistry of oxides and oxyhydroxides. Reviews in Mineralogy, 25, 11–68.Google Scholar

  • Wissmann, S., Wurmb, V.v., Litterst, F.J., Dieckmann, R., and Becker, K.D. (1998) The temperature dependent cation distribution in magnetite. Journal Physics and Chemistry of Solids, 59, 321–330.Google Scholar

  • Wu, C.C., and Mason, T.O. (1981) Thermopower measurement of cation distribution in magnetite. Journal of the American Ceramic Society, 64, 520–522.Google Scholar

  • Yamanaka, T., and Takéuchi, Y. (1983) Order–disorder transition in MgAl2O4 spinel at high temperatures up to 1700 °C. Zeitshrift für Krisallographie, 165, 65–78.Google Scholar

  • Zhu, X., Kilirai, S.S., Hitchcock, A.P., and Bazylinski, D.A. (2015) What is the correct Fe L2,3 X ray absorption spectrum of magnetite? Journal of Electron Spectroscopy and Related Phenomena, 199, 19–26.Google Scholar

About the article

Received: 2015-10-06

Accepted: 2016-02-16

Published Online: 2016-06-03

Published in Print: 2016-06-01


Citation Information: American Mineralogist, Volume 101, Issue 6, Pages 1373–1388, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5612.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in