Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

See all formats and pricing
More options …
Volume 101, Issue 9


Magnetite plaquettes are naturally asymmetric materials in meteorites

Queenie H.S. Chan / Michael E. Zolensky / James E. Martinez / Akira Tsuchiyama
  • Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Akira Miyake
  • Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-09-01 | DOI: https://doi.org/10.2138/am-2016-5604


Life on Earth shows preference toward the set of organics with particular spatial configurations. Enantiomeric excesses have been observed for α-methyl amino acids in meteorites, which suggests that chiral asymmetry might have an abiotic origin. A possible abiotic mechanism that could produce chiral asymmetry in meteoritic amino acids is their formation under the influence of asymmetric catalysts, as mineral crystallization can produce spatially asymmetric structures. Although magnetite plaquettes have been proposed to be a possible candidate for an asymmetric catalyst, based on the suggestion that they have a spiral structure, a comprehensive description of their morphology and interpretation of the mechanism associated with symmetry-breaking in biomolecules remain elusive. Here we report observations of magnetite plaquettes in carbonaceous chondrites (CC) that were made with scanning electron microscopy and synchrotron X-ray computed microtomography (SXRCT). We obtained the crystal orientation of the plaquettes using electron backscatter diffraction (EBSD) analysis. SXRCT permits visualization of the internal features of the plaquettes. It provides an unambiguous conclusion that the plaquettes are devoid of a spiral feature and, rather that they are stacks of individual magnetite disks that do not join to form a continuous spiral. Despite the lack of spiral features, our EBSD data show significant changes in crystal orientation between adjacent magnetite disks. The magnetite disks are displaced in a consistent relative direction that lead to an overall crystallographic rotational mechanism. This work offers an explicit understanding of the structures of magnetite plaquettes in CC, which provides a fundamental basis for future interpretation of the proposed symmetry-breaking mechanism.

Key Words: Magnetite; plaquettes; carbonaceous chondrites; symmetry-breaking; scanning electron microscopy; SEM; electron backscatter diffraction; EBSD; synchrotron X-ray computed microtomography; SXRCT; aqueous alteration; crystal structure

References cited

  • Bennett, C., Graham, J., and Thornber, M. (1972) New observations on natural pyrrhotites Part l. Mineragraphic techniques. American Mineralogist, 57, 445–462.Google Scholar

  • Blackmond, D.G., and Klussmann, M. (2007) Spoilt for choice: assessing phase behavior models for the evolution of homochirality. Chemical Communications, 39, 3990–3996.Google Scholar

  • Botta, O., Glavin, D.P., Kminek, G., and Bada, J.L. (2002) Relative amino acid concentrations as a signature for parent body processes of carbonaceous chondrites. Origins of Life and Evolution of the Biosphere, 32(2), 143–163.Google Scholar

  • Bradley, J.P., McSween, H.Y., and Harvey, R.P. (1998) Epitaxial growth of nanophase magnetite in Martian meteorite Allan Hills 84001: Implications for biogenic mineralization. Meteoritics & Planetary Science, 33(4), 765–773.Google Scholar

  • Bürger, A., Magdans, U., and Gies, H. (2013) Adsorption of amino acids on the magnetite-(111)-surface: a force field study. Journal of Molecular Modeling, 19(2), 851–857.Google Scholar

  • Burton, A.S., Stern, J.C., Elsila, J.E., Glavin, D.P., and Dworkin, J.P. (2012) Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chemical Society Reviews, 41(16), 5459–5472.Google Scholar

  • Burton, A.S., Elsila, J.E., Hein, J.E., Glavin, D.P., and Dworkin, J.P. (2013) Extraterrestrial amino acids identified in metal-rich CH and CB carbonaceous chondrites from Antarctica. Meteoritics & Planetary Science, 48(3), 390–402.Google Scholar

  • Burton, A.S., Grunsfeld, S., Elsila, J.E., Glavin, D.P., and Dworkin, J.P. (2014) The effects of parent-body hydrothermal heating on amino acid abundances in CI-like chondrites. Polar Science, 8(3), 255–263.Google Scholar

  • Butler, R.F., and Banerjee, S.K. (1975) Theoretical single-domain grain size range in magnetite and titanomagnetite. Journal of Geophysical Research, 80(29), 4049–4058.Google Scholar

  • Cloete, M., Hart, R.J., Schmid, H.K., Drury, M., Demanet, C.M., and Sankar, K.V. (1999) Characterization of magnetite particles in shocked quartz by means of electron- and magnetic force microscopy: Vredefort, South Africa. Contributions to Mineralogy and Petrology, 137(3), 232–245.Google Scholar

  • Cronin, J.R., and Chang, S. (1993) Organic matter in meteorites: Molecular and isotopic analyses of the Murchison meteorite. In J.M. Greenberg, C.X. Mendoza-Gomez, and V. Pirronello, Eds., The Chemistry of Life’s Origins, p. 209-258. Springer.Google Scholar

  • Eckhardt, C.J., Peachey, N.M., Swanson, D.R., Takacs, J.M., Khan, M.A., Gong, X., Kim, J.H., Wang, J., and Uphaus, R.A. (1993) Separation of chiral phases in monolayer crystals of racemic amphiphiles. Nature, 362, 614–616.Google Scholar

  • Frank, F.C. (1949) The influence of dislocations on crystal growth. Discussions of the Faraday Society, 5, 48–54.Google Scholar

  • Glavin, D.P., and Dworkin, J.P. (2009) Enrichment of the amino acid L-isovaline by aqueous alteration on CI and CM meteorite parent bodies. Proceedings of the National Academy of Sciences, 106(14), 5487–5492.Google Scholar

  • Glavin, D.P., Callahan, M.P., Dworkin, J.P., and Elsila, J.E. (2011) The effects of parent body processes on amino acids in carbonaceous chondrites. Meteoritics & Planetary Science, 45(12), 1948–1972.Google Scholar

  • Glavin, D.P., Elsila, J.E., Burton, A.S., Callahan, M.P., Dworkin, J.P., Hilts, R.W., and Herd, C.D.K. (2012) Unusual nonterrestrial l-proteinogenic amino acid excesses in the Tagish Lake meteorite. Meteoritics & Planetary Science, 47(8), 1347–1364.Google Scholar

  • Greshake, A., Krot, A.N., Flynn, G.J., and Keil, K. (2005) Fine-grained dust rims in the Tagish Lake carbonaceous chondrite: Evidence for parent body alteration. Meteoritics & Planetary Science, 40, 1413–1431.Google Scholar

  • Hazen, R.M., and Sholl, D.S. (2003) Chiral selection on inorganic crystalline surfaces. Nature Materials, 2(6), 367–374.Google Scholar

  • Hazen, R.M., Filley, T.R., and Goodfriend, G.A. (2001) Selective adsorption of l- and d-amino acids on calcite: Implications for biochemical homochirality. Proceedings of the National Academy of Sciences, 98(10), 5487–5490.Google Scholar

  • Hua, X., and Buseck, P.R. (1998) Unusual forms of magnetite in the Orgueil carbonaceous chondrite. Meteoritics & Planetary Science, 33(S4), A215–A220.Google Scholar

  • Izawa, M.R.M., Flemming, R.L., McCausland, P.J.A., Southam, G., Moser, D.E., and Barker, I.R. (2010) Multi-technique investigation reveals new mineral, chemical, and textural heterogeneity in the Tagish Lake C2 chondrite. Planetary and Space Science, 58(10), 1347–1364.Google Scholar

  • Jedwab, J. (1967) La magnetite en plaquettes des meteorites carbonees d’alais, ivuna et orgueil. Earth and Planetary Science Letters, 2(5), 440–444.Google Scholar

  • Jedwab, J. (1971) La magnétite de la météorite d’Orgueil vue au microscope électronique à balayage. Icarus, 15(2), 319–340.Google Scholar

  • Keller, L.P., and Walker, R.M. (2011) Mineralogy and petrography of MIL 090001, a highly altered CV chondrite from the reduced sub-group. 42nd Lunar and Planetary Institute Science Conference, abstract 2409.Google Scholar

  • Keller, L.P., McKeegan, K., and Sharp, Z. (2012) The oxygen isotopic composition of MIL 090001: a CR2 chondrite with abundant refractory inclusions. Conference paper, NASA Technical Reports Server, http://www.sti.nasa.gov.

  • Kereszturi, A., Blumberger, Z., Józsa, S., May, Z., Müller, A., Szabó, M., and Tóth, M. (2014) Alteration processes in the CV chondrite parent body based on analysis of NWA 2086 meteorite. Meteoritics & Planetary Science, 49(8), 1350–1364.Google Scholar

  • Kerridge, J.F., Mackay, A.L., and Boynton, W.V. (1979) Magnetite in CI carbonaceous meteorites: Origin by aqueous activity on a planetesimal surface. Science, 205, 395–397.Google Scholar

  • Lahav, M., and Leiserowitz, L. (1999) Spontaneous resolution: From threedimensional crystals to two-dimensional magic nanoclusters. Angewandte Chemie International Edition, 38(17), 2533–2536.Google Scholar

  • Lambert, J.-F. (2008) Adsorption and polymerization of amino acids on mineral surfaces: A Review. Origins of Life and Evolution of Biospheres, 38(3), 211–242.Google Scholar

  • Li, Z.Q., Lu, C.J., Xia, Z.P., Zhou, Y., and Luo, Z. (2007) X-ray diffraction patterns of graphite and turbostratic carbon. Carbon, 45(8), 1686–1695.Google Scholar

  • Lipschutz, M.E., Zolensky, M.E., and Bell, M.S. (1999) New petrographic and trace element data on thermally metamorphosed carbonaceous chondrites. Antarctic Meteorite Research, 12, 57.Google Scholar

  • Meierhenrich, U.J., Nahon, L., Alcaraz, C., Bredehöft, J.H., Hoffmann, S.V., Barbier, B., and Brack, A. (2005) Asymmetric vacuum UV photolysis of the amino acid leucine in the solid state. Angewandte Chemie International Edition, 44(35), 5630–5634.Google Scholar

  • Meinert, C., Bredehöft, J.H., Filippi, J.-J., Baraud, Y., Nahon, L., Wien, F., Jones, N.C., Hoffmann, S.V., and Meierhenrich, U.J. (2012) Anisotropy spectra of amino acids. Angewandte Chemie International Edition, 51(18), 4484–4487.Google Scholar

  • Meunier, A. (2006) Why are clay minerals small? Clay Minerals, 41(2), 551–566.Google Scholar

  • Muxworthy, A.R., and Williams, W. (2009) Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: implications for magnetosome crystals. Journal of the Royal Society Interface, 6(41), 1207–1212.Google Scholar

  • Pizzarello, S. (2012) Catalytic syntheses of amino acids and their significance for nebular and planetary chemistry. Meteoritics & Planetary Science, 47(8), 1291–1296.Google Scholar

  • Pizzarello, S., and Groy, T.L. (2011) Molecular asymmetry in extraterrestrial organic chemistry: An analytical perspective. Geochimica et Cosmochimica Acta, 75(2), 645–656.Google Scholar

  • Pizzarello, S., and Weber, A.L. (2004) Prebiotic amino acids as asymmetric catalysts. Science, 303, 1151.Google Scholar

  • Pizzarello, S., Zolensky, M., and Turk, K.A. (2003) Nonracemic isovaline in the Murchison meteorite: Chiral distribution and mineral association. Geochimica et Cosmochimica Acta, 67(8), 1589–1595.Google Scholar

  • Pizzarello, S., Schrader, D.L., Monroe, A.A., and Lauretta, D.S. (2012) Large enantiomeric excesses in primitive meteorites and the diverse effects of water in cosmochemical evolution. Proceedings of the National Academy of Sciences, 109(30), 11949–11954.Google Scholar

  • Shallcross, S., Sharma, S., Kandelaki, E., and Pankratov, O.A. (2010) Electronic structure of turbostratic graphene. Physical Review B, 81(16), 165105.Google Scholar

  • Sheldon, R.B., and Hoover, R. (2012) Carbonaceous chondrites as bioengineered comets. SPIE Optical Engineering+ Applications, p. 85210N-85210N-16. International Society for Optics and Photonics.Google Scholar

  • Siffert, B., and Naidja, A. (1992) Stereoselectivity of montmorillonite in the adsorption and deamination of some amino acids. Clay Minerals, 27(1), 109–118.Google Scholar

  • Singh, G., Chan, H., Baskin, A., Gelman, E., Repnin, N., Král, P., and Klajn, R. (2014) Self-assembly of magnetite nanocubes into helical superstructures. Science, 345, 1149–1153.Google Scholar

  • Soai, K., Shibata, T., Morioka, H., and Choji, K. (1995) Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature, 378, 767–768.Google Scholar

  • Soai, K., Osanai, S., Kadowaki, K., Yonekubo, S., Shibata, T., and Sato, I. (1999) d- and l-quartz-promoted highly enantioselective synthesis of a chiral organic compound. Journal of the American Chemical Society, 121(48), 11235–11236.Google Scholar

  • Sugiura, N. (2000) Petrographic evidence for in-situ hydration of the CH chondrite PCA91467. Lunar and Planetary Institute Science Conference Abstracts, 31, 1503.Google Scholar

  • Takir, D., Emery, J.P., McSween, H.Y., Hibbitts, C.A., Clark, R.N., Pearson, N., and Wang, A. (2013) Nature and degree of aqueous alteration in CM and CI carbonaceous chondrites. Meteoritics & Planetary Science, 48(9), 1618–1637.Google Scholar

  • Trigo-Rodriquez, J., Moyano-Cambero, C., Mestres, N., Fraxedas, J., Zolensky, M., Nakamura, T., and Martins, Z. (2013) Evidence for extended aqueous alteration in CR carbonaceous chondrites. Conference paper, NASA Technical Reports Server, http://www.sti.nasa.gov.

  • Tsuchiyama, A., Nakano, T., Uesugi, K., Uesugi, M., Takeuchi, A., Suzuki, Y., Noguchi, R., Matsumoto, T., Matsuno, J., Nagano, T., and others. (2013) Analytical dual-energy microtomography: A new method for obtaining threedimensional mineral phase images and its application to Hayabusa samples. Geochimica et Cosmochimica Acta, 116, 5–16.Google Scholar

  • Viedma, C., Ortiz, J.E., de Torres, T., Izumi, T., and Blackmond, D.G. (2008) Evolution of solid phase homochirality for a proteinogenic amino acid. Journal of the American Chemical Society, 130(46), 15,274–15,275.Google Scholar

  • Viedma, C., Noorduin, W.L., Ortiz, J.E., de Torres, T., and Cintas, P. (2011) Asymmetric amplification in amino acid sublimation involving racemic compound to conglomerate conversion. Chemical Communications, 47(2), 671–673.Google Scholar

  • Weisberg, M.K., Prinz, M., Clayton, R.N., and Mayeda, T.K. (1993) The CR (Renazzo-type) carbonaceous chondrite group and its implications. Geochimica et Cosmochimica Acta, 57(7), 1567–1586.Google Scholar

  • Yao, N., Epstein, A.K., Liu, W.W., Sauer, F., and Yang, N. (2009) Organic–inorganic interfaces and spiral growth in nacre. Journal of the Royal Society Interface, 6(33), 367–376.Google Scholar

  • Zaia, D.A.M. (2004) A review of adsorption of amino acids on minerals: Was it important for origin of life? Amino Acids, 27(1), 113–118.Google Scholar

  • Zolensky, M.E., Ivanov, A.V., Yang, S.V., Mittlefehldt, D.W., and Ohsumi, K. (1996a) The Kaidun meteorite: Mineralogy of an unusual CM1 lithology. Meteoritics & Planetary Science, 31(4), 484–493.Google Scholar

  • Zolensky, M.E., Weisberg, M.K., Buchanan, P.C., and Mittlefehldt, D.W. (1996b) Mineralogy of carbonaceous chondrite clasts in HED achondrites and the Moon. Meteoritics & Planetary Science, 31(4), 518–537.Google Scholar

  • Zolensky, M.E., Nakamura, K., Gounelle, M., Mikouchi, T., Kasama, T., Tachikawa, O., and Tonui, E. (2002) Mineralogy of Tagish Lake: An ungrouped type 2 carbonaceous chondrite. Meteoritics & Planetary Science, 37(5), 737–761.Google Scholar

About the article

Received: 2015-10-21

Accepted: 2016-05-06

Published Online: 2016-09-01

Published in Print: 2016-09-01

Citation Information: American Mineralogist, Volume 101, Issue 9, Pages 2041–2050, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5604.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in