Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

See all formats and pricing
More options …
Volume 101, Issue 9


Redox variations in the inner solar system with new constraints from vanadium XANES in spinels

Kevin Righter / Steve R. Sutton
  • GSECARS University of Chicago, 9700 South Cass Avenue, Building 434A, Argonne, Illinois 60439, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lisa Danielson / Kellye Pando / Matt Newville
  • GSECARS University of Chicago, 9700 South Cass Avenue, Building 434A, Argonne, Illinois 60439, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-09-01 | DOI: https://doi.org/10.2138/am-2016-5638


Many igneous rocks contain mineral assemblages that are not appropriate for application of common mineral equilibria or oxybarometers to estimate oxygen fugacity. Spinel-structured oxides, common minerals in many igneous rocks, typically contain sufficient V for XANES measurements, allowing use of the correlation between oxygen fugacity and V K pre-edge peak intensity. Here we report V pre-edge peak intensities for a wide range of spinels from source rocks ranging from terrestrial basalt to achondrites to oxidized chondrites. The XANES measurements are used to calculate oxygen fugacity from experimentally produced spinels of known fo2. We obtain values, in order of increasing fo2, from IW-3 for lodranites and acapulcoites, to diogenites, brachinites (near IW), ALH 84001, terrestrial basalt, hornblende-bearing R chondrite LAP 04840 (IW+1.6), and finally ranging up to IW+3.1 for CK chondrites (where the ΔIW logfo2 of a sample relative to the logfo2 of the IW buffer at specific T). To place the significance of these new measurements into context we then review the range of oxygen fugacities recorded in major achondrite groups, chondritic and primitive materials, and planetary materials. This range extends from IW-8 to IW+2. Several chondrite groups associated with aqueous alteration exhibit values that are slightly higher than this range, suggesting that water and oxidation may be linked. The range in planetary materials is even wider than that defined by meteorite groups. Earth and Mars exhibit values higher than IW+2, due to a critical role played by pressure. Pressure allows dissolution of volatiles into magmas, which can later cause oxidation or reduction during fractionation, cooling, and degassing. Fluid mobility, either in the sub-arc mantle and crust, or in regions of metasomatism, can generate values >IW+2, again suggesting an important link between water and oxidation. At the very least, Earth exhibits a higher range of oxidation than other planets and astromaterials due to the presence of an O-rich atmosphere, liquid water, and hydrated interior. New analytical techniques and sample suites will revolutionize our understanding of oxygen fugacity variation in the inner solar system, and the origin of our solar system in general.

Keywords: Oxygen fugacity; meteorites; solar nebula; spinel; chromite; vanadium; Invited Centennial article

References cited

  • Ague, J.J., and Brimhall, G.H. (1988) Magmatic arc asymmetry and distribution of anomalous plutonic belts in the batholiths of California: Effects of assimilation, crustal thickness, and depth of crystallization. Geological Society of America Bulletin, 100, 912–927.Google Scholar

  • Allende Prieto, C., Asplund, M., and Lambert, D.L. (2002) A reappraisal of the solar photospheric C/O ratio. Astrophysical Journal, 573, L137–L140.Google Scholar

  • Ash, R.D., Day, J.M.D., McDonough, W.F., Bellucci, J., Rumble, D., Liu, Y., and Taylor, L.A. (2008) Petrogenesis of the differentiated achondrite GRA 06129: trace elements and chronology. Lunar and Planetary Science Conference, 39, Abstract 2271.Google Scholar

  • Basilevsky, A.T., Head, J.W., Schaber, G.G., and Strom, R.G. (1997) The resurfacing history of Venus. In S.W. Bougher, D.M. Hunten, and R.J. Philips, Eds., Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, p. 1047–1083. University of Arizona Press, Tucson.Google Scholar

  • Bassett, W.A., and Brown, G.E. Jr. (1990) Synchrotron radiation—Applications in the Earth sciences. Annual Review of Earth and Planetary Sciences, 18, 387–447.Google Scholar

  • Bell, A.S., Burger, P.V., Le, L., Shearer, C.K., Papike, J.J., Sutton, S.R., and Jones, J.H. (2014) XANES measurements of Cr valence in olivine and their applications to planetary basalts. American Mineralogist, 99, 1404–1412.Google Scholar

  • Benedix, G.K., Lauretta, D.S., and McCoy, T. J. (2005) Thermodynamic constraints on the formation conditions of winonaites and silicate-bearing IAB irons. Geochimica et Cosmochimica Acta, 69, 5123–5131.Google Scholar

  • Berthet, S., Malavergne, V., and Righter, K. (2009) Melting of the Indarch meteorite (EH4 chondrite) at 1GPa and variable oxygen fugacity: Implications for early planetary differentiation processes. Geochimica et Cosmochimica Acta, 73, 6402–6420.Google Scholar

  • Bird, J.M., Goodrich, C.A., and Weathers, M.S. (1981) Petrogenesis of Uivfaq iron, Disko Island, Greenland. Journal of Geophysical Research: Solid Earth, 86, 11787–11805.Google Scholar

  • Bischoff, A., Vogel, N., and Roszjar, J. (2011) The Rumuruti chondrite group. Chemie der Erde-Geochemistry, 71, 101–133.Google Scholar

  • Bond, J.C., Lauretta, D.S., and O’Brien, D.P. (2010) Making the Earth: Combining dynamics and chemistry in the Solar System. Icarus, 205, 321–337.Google Scholar

  • Bourcier, W.L., and Zolensky, M.E. (1992) Computer modeling of aqueous alteration on carbonaceous chondrite parent bodies. Lunar and Planetary Science Conference, 23, 143–144.Google Scholar

  • Bradley, J.P. (1994) Nanometer-scale mineralogy and petrography of fine-grained aggregates in anhydrous interplanetary dust particles. Geochimica et Cosmochimica Acta, 58, 2123–2134.Google Scholar

  • Brearley, A.J. (2006) The action of water. In D.S. Lauretta and H.Y. McSween, Eds., Meteorites and the Early Solar System II, p. 584–624. University of Arizona Press, Tucson.Google Scholar

  • Campbell, A.J., Humayun, M., and Weisberg, M.K. (2002) Siderophile element constraints on the formation of metal in the metal-rich chondrites Bencubbin, Weatherford, and Gujba. Geochimica et Cosmochimica Acta, 66, 647–660.Google Scholar

  • Carmichael, I.S.E. (1966) The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. Contributions to Mineralogy and Petrology, 14, 36–64.Google Scholar

  • Carmichael, I.S.E. (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contributions to Mineralogy and Petrology, 106, 129–141.Google Scholar

  • Carmichael, I.S.E., and Ghiorso, M.S. (1990) The effect of oxygen fugacity on the redox state of natural liquids and their crystallizing phases. Reviews in Mineralogy and Geochemistry, 24, 191–212.Google Scholar

  • Carroll, M.R., and Webster, J.D. (1994) Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas. Reviews in Mineralogy and Geochemistry, 30, 231–279.Google Scholar

  • Chase, M.W. (1986) JANAF Thermochemical Tables. American Chemical Society, New York.Google Scholar

  • Clayton, R.N. (2005) 1.06: Oxygen Isotopes in Meteorites. Meteorites, Comets, and Planets. Treatise on Geochemistry, 1, 129.Google Scholar

  • Connolly, H.C., Hewins, R.H., Ash, R.D., Zanda, B., Lofgren, G.E., and Bourot-Denise, M. (1994) Carbon and the formation of reduced chondrules. Nature, 371, 136–139.Google Scholar

  • Crabtree, S.M., and Lange, R.A. (2012) An evaluation of the effect of degassing on the oxidation state of hydrous andesite and dacite magmas: a comparison of pre-and post-eruptive Fe2+ concentrations. Contributions to Mineralogy and Petrology, 163, 209–224.Google Scholar

  • Danielson, L.R., Righter, K., and Humayun, M. (2009) Trace element chemistry of Cumulus Ridge 04071 pallasite with implications for main group pallasites. Meteoritics and Planetary Science, 44, 1019–1032.Google Scholar

  • Dowty, E., and Clark, J.R. (1973) Crystal structure refinement and optical properties of a Ti3+ fassaite from the Allende meteorite. American Mineralogist, 58, 230–242.Google Scholar

  • Dyar, M.D., Gunter, M.E., Delaney, J.S., Lanzarotti, A., and Sutton, S.R. (2002) Systematics in the structure and XANES spectra of pyroxenes, amphiboles, and micas as derived from oriented single crystals. Canadian Mineralogist, 40, 1375–1393.Google Scholar

  • Dyl, K.A., Simon, J.I., and Young, E.D. (2011) Valence state of titanium in the Wark–Lovering rim of a Leoville CAI as a record of progressive oxidation in the early Solar Nebula. Geochimica et Cosmochimica Acta, 75, 937–949.Google Scholar

  • Elardo, S.M., McCubbin, F.M., and Shearer, C.K. (2012) Chromite symplectites in Mg-suite troctolite 76535 as evidence for infiltration metasomatism of a lunar layered intrusion. Geochimica et Cosmochimica Acta, 87, 154–177.Google Scholar

  • Emery, J.P., Sprague, A.L., Witteborn, F.C., Colwell, J.E., Kozlowski, R.W.H., and Wooden, D.H. (1998) Mercury: Thermal modeling and mid-infrared (5–12 mm) observations. Icarus, 136, 104–123.Google Scholar

  • Fedkin, A.V., Grossman, L., Humayun, M., Simon, S.B., and Campbell, A.J. (2015) Condensates from vapor made by impacts between metal-, silicate-rich bodies: Comparison with metal and chondrules in CB chondrites. Geochimica et Cosmochimica Acta, 164, 236–261.Google Scholar

  • Fischer, R.A., and Ciesla, F.J. (2014) Dynamics of the terrestrial planets from a large number of N-body simulations. Earth and Planetary Science Letters, 392, 28–38.Google Scholar

  • Fogel, R.A. (2005) Aubrite basalt vitrophyres: The missing basaltic component and high-sulfur silicate melts. Geochimica et Cosmochimica Acta, 69, 1633–1648.Google Scholar

  • Frost, B.R. (1991) Introduction to oxygen fugacity and its petrologic importance. Reviews in Mineralogy and Geochemistry, 25, 1–9.Google Scholar

  • Frost, D.J., and McCammon, C.A. (2008) The redox state of Earth’s mantle. Annual Reviews of Earth and Planetary Science, 36, 389–40.Google Scholar

  • Gainsforth, Z., Butterworth, A.L., Stodolna, J., Westphal, A.J., Huss, G.R., Nagashima, K., and Simionovici, A.S. (2015) Constraints on the formation environment of two chondrule-like igneous particles from comet 81P/Wild 2. Meteoritics and Planetary Science, 50, 976–1004.Google Scholar

  • Garvie, L.A., and Buseck, P.R. (1998) Ratios of ferrous to ferric iron from nanometre-sized areas in minerals. Nature, 396, 667–670.Google Scholar

  • Goettel, K.A. (1988) Present bounds on the bulk composition of Mercury: Implications for planetary formation processes. In F. Vilas, C.R. Chapman, and M.S. Matthews, Eds., Mercury, p. 613–621. University of Arizona Press, Tucson.Google Scholar

  • Goodrich, C.A., Sutton, S.R., Wirick, S., and Jercinovic, M.J. (2013) Chromium valences in ureilite olivine and implications for ureilite petrogenesis. Geochimica et Cosmochimica Acta, 122, 280–305.Google Scholar

  • Gross, J., Treiman, A.H., Filiberto, J., and Herd, C.D. (2011) Primitive olivine-phyric shergottite NWA 5789: Petrography, mineral chemistry, and cooling history imply a magma similar to Yamato-980459. Meteoritics and Planetary Science, 46, 116–133.Google Scholar

  • Grossman, L., and Fedkin, A.V. (2015) Dust enrichment: Less than meets the eye. 78th Annual Meeting of the Meteoritical Society, July 27–31, 2015, Berkeley, California. LPI Contribution No. 1856, p. 5126.Google Scholar

  • Grossman, L., Olsen, E., and Lattimer, J.M. (1979) Silicon in carbonaceous chondrite metal: Relic of high-temperature condensation. Science, 206, 449–451.Google Scholar

  • Grossman, L., Beckett, J.R., Fedkin, A.V., Simon, S.B., and Ciesla, F.J. (2008) Redox conditions in the solar nebula: Observational, experimental, and theoretical constraints. Reviews in Mineralogy and Geochemistry, 68, 93–140.Google Scholar

  • Hanson, B., and Jones, J.H. (1998) The systematics of Cr3+ and Cr2+ partitioning between olivine and liquid in the presence of spinel. American Mineralogist, 83, 669–684.Google Scholar

  • Herd, C.D.K. (2008) Basalts as probes of planetary interior redox state. Reviews in Mineralogy and Geochemistry, 68, 527–553.Google Scholar

  • Herd, C.D., Papike, J.J., and Brearley, A.J. (2001) Oxygen fugacity of martian basalts from electron microprobe oxygen and TEM-EELS analyses of Fe-Ti oxides. American Mineralogist, 86, 1015–1024.Google Scholar

  • Hewins, R.H., and Ulmer, G.C. (1984) Intrinsic oxygen fugacities of diogenites and mesosiderite clasts. Geochimica et Cosmochimica Acta, 48, 1555–1560.Google Scholar

  • Hillgren, V.J., Gessmann, C.K., and Li, J. (2000) An experimental perspective on the light element in Earth’s core. In R. Canup and K. Righter, Eds., Origin of the Earth and Moon, p. 245–263. University of Arizona Press, Tucson.Google Scholar

  • Holloway, J.R., and Blank, J.G. (1994) Application of experimental results to COH species in natural melts. Reviews in Mineralogy, 30, 187–187.Google Scholar

  • Ihinger, P.D., and Stolper, E. (1986) The color of meteoritic hibonite: an indicator of oxygen fugacity. Earth and Planetary Science Letters, 78, 67–79.Google Scholar

  • Isa, J., McKeegan, K.D., and Wasson, J.T. (2015) Study of inclusions in iron meteorites, Cr-bearing sulfide inclusions in IVA iron meteorites. Lunar and Planetary Science Conference, 46, Abstract 3013.Google Scholar

  • Joswiak, D.J., Brownlee, D.E., Matrajt, G., Westphal, A.J., and Snead, C.J. (2009) Kosmochloric Ca-rich pyroxenes and FeO-rich olivines (Kool grains) and associated phases in Stardust tracks and chondritic porous interplanetary dust particles: Possible precursors to FeO-rich type II chondrules in ordinary chondrites. Meteoritics and Planetary Science, 44, 1561–1588.Google Scholar

  • Jurewicz, A.J.G., Mittlefehldt, D.W., and Jones, J.H. (1993) Experimental partial melting of the Allende (CV) and Murchison (CM) chondrites and the origin of asteroidal basalts. Geochimica et Cosmochimica Acta, 57, 2123–2139.Google Scholar

  • Kallemeyn, G.W., Rubin, A.E., and Wasson, J.T. (1991) The compositional classification of chondrites: V. The Karoonda (CK) group of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 55, 881–892.Google Scholar

  • Karner, J.M., Sutton, S.R., Papike, J.J., Shearer, C.K., Jones, J.H., and Newville, M. (2006) Application of a new vanadium valence oxybarometer to basaltic glasses from the Earth, Moon, and Mars. American Mineralogist, 91, 270–277.Google Scholar

  • Keller, L.P., and Messenger, S. (2011) On the origins of GEMS grains. Geochimica et Cosmochimica Acta, 75, 5336–5365.Google Scholar

  • Kelley, K.A., and Cottrell, E. (2012) The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth and Planetary Science Letters, 329, 109–121.Google Scholar

  • Kersting, A.B., Arculus, R.J., Delano, J.W., and Loureiro, D. (1989) Electrochemical measurements bearing on the oxidation state of the Skaergaard Layered Intrusion. Contributions to Mineralogy and Petrology, 102, 376–388.Google Scholar

  • Kessel, R., Beckett, J.R., Huss, G.R., and Stolper, E.M. (2004) The activity of chromite in multicomponent spinels: Implications for T–fO2 conditions of equilibrated H chondrites. Meteoritics and Planetary Science, 39, 1287–1305.Google Scholar

  • Kozul, J.M., Ulmer, G.C., and Hewins, R.H. (1988) Intrinsic fugacity measurements of some Allende Type B inclusions. Geochimica et Cosmochimica Acta, 52, 2707–2716.Google Scholar

  • Kress, V.C., and Carmichael, I.S.E. (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology, 108, 82–92.Google Scholar

  • Lauretta, D.S., Bartels, A.E., Barucci, M.A., Bierhaus, E.B., Binzel, R.P., Bottke, W.F., and Walsh, K.J. (2015) The OSIRIS-REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations. Meteoritics and Planetary Science, 50, 834–849.Google Scholar

  • Le Guillou, C., Changela, H.G., and Brearley, A.J. (2015) Widespread oxidized and hydrated amorphous silicates in CR chondrites matrices: Implications for alteration conditions and H2 degassing of asteroids. Earth and Planetary Science Letters, 420, 162–173.Google Scholar

  • Lehner, S.W., Petaev, M.I., Zolotov, M.Y., and Buseck, P.R. (2013) Formation of niningerite by silicate sulfidation in EH3 enstatite chondrites. Geochimica et Cosmochimica Acta, 101, 34–56.Google Scholar

  • Leroux, H., Rietmeijer, F.J., Velbel, M.A., Brearley, A.J., Jacob, D., Langenhorst, F., and Zolensky, M.E. (2008) A TEM study of thermally modified comet 81P/Wild 2 dust particles by interactions with the aerogel matrix during the Stardust capture process. Meteoritics and Planetary Science, 43, 97–120.Google Scholar

  • Leroux, H., Roskosz, M., and Jacob, D. (2009) Oxidation state of iron and extensive redistribution of sulfur in thermally modified Stardust particles. Geochimica et Cosmochimica Acta, 73, 767–777.Google Scholar

  • Lusby, D., Scott, E.R.D., and Keil, K. (1987) Ubiquitous high-FeO silicates in enstatite chondrites. Journal of Geophysical Research: Solid Earth, 92, E679–E695.Google Scholar

  • McCoy, T.J., Keil, K., Clayton, R.N., Mayeda, T.K., Bogard, D.D., Garrison, D.H., and Wieler, R. (1997) A petrologic and isotopic study of lodranites: Evidence for early formation as partial melt residues from heterogeneous precursors. Geochimica et Cosmochimica Acta, 61, 623–637.Google Scholar

  • McCoy, T.J., Dickinson, T.L., and Lofgren, G.E. (1999) Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration. Meteoritics and Planetary Science, 34, 735–746.Google Scholar

  • McCubbin, F.M., Smirnov, A., Nekvasil, H., Wang, J., Hauri, E., and Lindsley, D.H. (2010) Hydrous magmatism on Mars: A source of water for the surface and subsurface during the Amazonian. Earth and Planetary Science Letters, 292, 132–138.Google Scholar

  • McCubbin, F.M., Riner, M.A., Vander Kaaden, K.E., and Burkemper, L.K. (2012) Is Mercury a volatile-rich planet? Geophysical Research Letters, 39, L09202.Google Scholar

  • McInnes, B.I., and Cameron, E.M. (1994) Carbonated, alkaline hybridizing melts from a sub-arc environment: Mantle wedge samples from the Tabar-Lihir-Tanga-Feni arc, Papua New Guinea. Earth and Planetary Science Letters, 122, 125–141.Google Scholar

  • McKay, G., Le, L., Wagstaff, J., and Crozaz, G. (1994) Experimental partitioning of rare earth elements and strontium: Constraints on petrogenesis and redox conditions during crystallization of Antarctic angrite Lewis Cliff 86010. Geochimica et Cosmochimica Acta, 58, 2911–2919.Google Scholar

  • McKay, G., Le, L., Schwandt, C., Mikouchi, T., Koizumi, E., and Jones, J.H. (2004) Yamato 980459: The most primitive shergottite? Lunar and Planetary Science Conference, 35, Abstract 2154.Google Scholar

  • McKeegan, K.D., Kallio, A.P.A., Heber, V.S., Jarzebinski, G., Mao, P.H., Coath, C.D., and Burnett, D.S. (2011) The oxygen isotopic composition of the Sun inferred from captured solar wind. Science, 332, 1528–1532.Google Scholar

  • McKeown, D.A., Buechele, A.C., Tappero, R., McCoy, T.J., and Gardner-Vandy, K.G. (2014) X-ray absorption characterization of Cr in forsterite within the MacAlpine Hills 88136 EL3 chondritic meteorite. American Mineralogist, 99, 190–197.Google Scholar

  • Mittlefehldt, D.W., Lindstrom, M.M., Bogard, D.D., Garrison, D.H., and Field, S.W. (1996) Acapulco- and Lodran-like achondrites: Petrology, geochemistry, chronology, and origin. Geochimica et Cosmochimica Acta, 60, 867–882.Google Scholar

  • Nakamura, T., Noguchi, T., Tsuchiyama, A., Ushikubo, T., Kita, N.T., Valley, J.W., and Nakano, T. (2008) Chondrule-like objects in short-period comet 81P/ Wild 2. Science, 321, 1664–1667.Google Scholar

  • Nicholis, M.G., and Rutherford, M.J. (2009) Graphite oxidation in the Apollo 17 orange glass magma: Implications for the generation of a lunar volcanic gas phase. Geochimica et Cosmochimica Acta, 73, 5905–5917.Google Scholar

  • Noguchi, T., Hicks, L.J., Bridges, J.C., Gurman, S.J., and Kimura, M. (2013) Comparing asteroid Itokawa samples to the Tuxtuac LL5 chondrite with X-ray absorption spectroscopy. Lunar and Planetary Science Conference, 44, Abstract 1147.Google Scholar

  • Ogliore, R.C., Butterworth, A.L., Fakra, S.C., Gainsforth, Z., Marcus, M.A., and Westphal, A.J. (2010) Comparison of the oxidation state of Fe in comet 81P/ Wild 2 and chondritic-porous interplanetary dust particles. Earth and Planetary Science Letters, 296, 278–286.Google Scholar

  • Osborn, E.F. (1959) Role of oxygen pressure in the crystallization and differentiation of basaltic magma. American Journal of Science, 257, 609–647.Google Scholar

  • Palme, H., Hutcheon, I.D., and Spettel, B. (1994) Composition and origin of refractory-metal-rich assemblages in a Ca, Al-rich Allende inclusion. Geochimica et Cosmochimica Acta, 58, 495–513.Google Scholar

  • Papike, J.J., Karner, J.M., and Shearer, C.K. (2004) Comparative planetary mineralogy: V/(Cr+Al) systematics in chromite as an indicator of relative oxygen fugacity. American Mineralogist, 89, 1557–1560.Google Scholar

  • Papike, J.J., Burger, P.V., Bell, A.S., Le, L., Shearer, C.K., Sutton, S.R., and Newville, M. (2013) Developing vanadium valence state oxybarometers (spinel-melt, olivine-melt, spinel-olivine) and V/(Cr+Al) partitioning (spinel-melt) for martian olivine-phyric basalts. American Mineralogist, 98, 2193–2196.Google Scholar

  • Papike, J.J., Burger, P.V., Bell, A.S., Shearer, C., Le, L., and Jones, J. (2015) Normal to inverse transition in martian spinel: Understanding the interplay between chromium, vanadium, and iron valence state partitioning through a crystal-chemical lens. American Mineralogist, 100, 2018–2025.Google Scholar

  • Paque, J.M., Sutton, S.R., Simon, S.B., Beckett, J.R., Burnett, D.S., Grossman, L., and Connolly, H.C. (2013) XANES and Mg isotopic analyses of spinels in Ca-Al-rich inclusions: Evidence for formation under oxidizing conditions. Meteoritics and Planetary Science, 48, 2015–2043.Google Scholar

  • Peslier, A., Hnatyshin, D., Herd, C.D.K., Walton, E.L., Brandon, A.D., Lapen, T.J., and Shafer, J.T. (2010) Crystallization, melt inclusion, and redox history of a Martian meteorite: Olivine-phyric shergottite Larkman Nunatak 06319. Geochimica et Cosmochimica Acta, 74, 4543–4576.Google Scholar

  • Petaev, M.I., Wood, J.A., Meibom, A., Krot, A.N., and Keil, K. (2003) The ZONMET thermodynamic and kinetic model of metal condensation. Geochimica et Cosmochimica Acta, 67, 1737–1751.Google Scholar

  • Righter, K., and Drake, M.J. (1996) Core formation in Earth’s moon, Mars, and Vesta. Icarus, 124, 513–529.Google Scholar

  • Righter, K., and Neff, K.E. (2007) Temperature and oxygen fugacity constraints on CK and R chondrites and implications for water and oxidation in the early solar system. Polar Science, 1, 25–44.Google Scholar

  • Righter, K., Arculus, R.J., Delano, J.W., and Paslick, C. (1990) Electrochemical measurements and thermodynamic calculations of redox equilibria in pallasite meteorites: Implications for the eucrite parent body. Geochimica et Cosmochimica Acta, 54, 1803–1815.Google Scholar

  • Righter, K., Sutton, S.R., Newville, M., Le, L., Schwandt, C.S., Uchida, H., and Downs, R.T. (2006a) An experimental study of the oxidation state of vanadium in spinel and basaltic melt with implications for the origin of planetary basalt. American Mineraogist, 91, 1643–1656.Google Scholar

  • Righter, K., Drake, M.J., and Scott, E. (2006b) Compositional relationships between meteorites and terrestrial planets. Meteorites and the Early Solar System II, 943, 803–828.Google Scholar

  • Righter, K., Yang, H., Costin, G., and Downs, R.T. (2008a) Oxygen fugacity in the Martian mantle controlled by carbon: New constraints from the nakhlite MIL 03346. Meteoritics and Planetary Science, 43, 1709–1723.Google Scholar

  • Righter, K., Chesley, J.T., Caiazza, C.M., Gibson, E.K., and Ruiz, J. (2008b) Re and Os concentrations in arc basalts: the roles of volatility and source region fO2 variations. Geochimica et Cosmochimica Acta, 72, 926–947.Google Scholar

  • Righter, K., Pando, K., and Danielson, L.R. (2009) Experimental evidence for sulfur-rich martian magmas: Implications for volcanism and surficial sulfur sources. Earth and Planetary Science Letters, 288, 235–243.Google Scholar

  • Righter, K., Danielson, L.R., Pando, K., Morris, R.V., Graff, T.G., Agresti, D.G., and Lanzirotti, A. (2013) Redox systematics of martian magmas with implications for magnetite stability. American Mineralogist, 98, 616–628.Google Scholar

  • Righter, K., Keller, L.P., Rahman, Z., and Christoffersen, R. (2014) Redox-driven exsolution of iron-titanium oxides in magnetite in Miller Range (MIL) 03346 nakhlite: Evidence for post crystallization oxidation in the nakhlite cumulate pile? American Mineralogist, 99, 2313–2319.Google Scholar

  • Robie, R.A., Hemmingway, B.S., and Fisher, J.R. (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar pressure and at higher temperature. U.S. Geological Survey Bulletin 1452.Google Scholar

  • Rohrbach, A., Ballhaus, C., Golla-Schindler, U., Ulmer, P., Kamenetsky, V.S., and Kuzmin, D.V. (2007) Metal saturation in the upper mantle. Nature, 449, 456–458.Google Scholar

  • Rubin, A.E. (2007) Petrogenesis of acapulcoites and lodranites: A shock-melting model. Geochimica et Cosmochimica Acta, 71, 2383–2401.Google Scholar

  • Sato, M., Hickling, N.L., and McLane, J.E. (1973) Oxygen fugacity values of Apollo 12, 14, and 15 lunar samples and reduced state of lunar magmas. Proceedings 4th Lunar and Planetary Science Conference, 1061–1070.Google Scholar

  • Schrader, D.L., Connolly, H.C., Lauretta, D.S., Nagashima, K., Huss, G.R., Davidson, J., and Domanik, K.J. (2013) The formation and alteration of the Renazzo-like carbonaceous chondrites II: linking O-isotope composition and oxidation state of chondrule olivine. Geochimica et Cosmochimica Acta, 101, 302–327.Google Scholar

  • Shearer, C.K., Papike, J.J., and Karner, J.M. (2006a) Pyroxene europium valence oxybarometer: Effects of pyroxene composition, melt composition, and crystallization kinetics. American Mineralogist, 91, 1565–1573.Google Scholar

  • Shearer, C.K., McKay, G., Papike, J.J., and Karner, J.M. (2006b) Valence state partitioning of vanadium between olivine-liquid: Estimates of the oxygen fugacity of Y980459 and application to other olivine-phyric martian basalts. American Mineralogist, 91, 1657–1663.Google Scholar

  • Shearer, C.K., Burger, P.V., Neal, C.R., Sharp, Z., Borg, L.E., Spivak-Birndorf, L., and Fernandes, V.A. (2008) A unique glimpse into asteroidal melting processes in the early solar system from the Graves Nunatak 06128/06129 achondrites. American Mineralogist, 93, 1937–1940.Google Scholar

  • Shearer, C.K., Burger, P.V., Neal, C., Sharp, Z., Spivak-Birndorf, L., Borg, L., and Fernandes, V.A. (2010) Non-basaltic asteroidal magmatism during the earliest stages of solar system evolution: A view from Antarctic achondrites Graves Nunatak 06128 and 06129. Geochimica et Cosmochimica Acta, 74, 1172–1199.Google Scholar

  • Shock, E.L., Amend, J.P., and Zolotov, M.Y. (2000) The early Earth vs. the origin of life. In R. Canup and K. Righter, Eds., Origin of the Earth and Moon, p. 527–543. University of Arizona Press, Tucson.Google Scholar

  • Simon, J.I., Hutcheon, I.D., Simon, S.B., Matzel, J.E., Ramon, E.C., Weber, P.K., and DePaolo, D.J. (2011) Oxygen isotope variations at the margin of a CAI records circulation within the solar nebula. Science, 331, 1175–1178.Google Scholar

  • Simon, J.I., Young, E.D., Russell, S.S., Tonui, E.K., Dyl, K.A., and Manning, C.E. (2005) A short timescale for changing oxygen fugacity in the solar nebula revealed by high-resolution 26Al–26Mg dating of CAI rims. Earth and Planetary Science Letters, 238, 272–283.Google Scholar

  • Simon, S.B., Sutton, S.R., and Grossman, L. (2007) Valence of titanium and vanadium in pyroxene in refractory inclusion interiors and rims. Geochimica et Cosmochimica Acta, 71, 3098–3118.Google Scholar

  • Simon, S.B., Joswiak, D.J., Ishii, H.A., Bradley, J.P., Chi, M., Grossman, L., and McKeegan, K.D. (2008) A refractory inclusion returned by Stardust from comet 81P/Wild 2. Meteoritics and Planetary Science, 43, 1861–1877.Google Scholar

  • Simon, S.B., Sutton, S.R., and Grossman, L. (2011) The growing inventory of Ti3+-bearing objects from the solar nebula. In Workshop on Formation of the First Solids in the Solar System, LPI Contribution 1639, Abstract 9074.Google Scholar

  • Simon, S.B., Sutton, S.R., and Grossman, L. (2013) The valence of Ti in enstatite chondrites: Not what you might think. Lunar and Planetary Science Conference, 44, Abstract 2270.Google Scholar

  • Simon, S.B., Sutton, S.R., and Grossman, L. (2015) The valence and coordination of Ti in olivine and pyroxene in ordinary and enstatite chondrites as a function of metamorphic grade. Lunar and Planetary Science Conference, 46, Abstract 2141.Google Scholar

  • Stodolna, J., Gainsforth, Z., Leroux, H., Butterworth, A.L., Tyliszczak, T., Jacob, D., and Westphal, A.J. (2013) Iron valence state of fine-grained material from the Jupiter family comet 81P/Wild 2—A coordinated TEM/STEM EDS/STXM study. Geochimica et Cosmochimica Acta, 122, 1–16.Google Scholar

  • Stolper, E. (1977) Experimental petrology of eucritic meteorites. Geochimica et Cosmochimica Acta, 41, 587–611.Google Scholar

  • Sutton, S.R., Karner, J., Papike, J., Delaney, J.S., Shearer, C., Newville, M., and Dyar, M.D. (2005) Vanadium K edge XANES of synthetic and natural basaltic glasses and application to microscale oxygen barometry. Geochimica et Cosmochimica Acta, 69, 2333–2348.Google Scholar

  • Tenner, T.J., Nakashima, D., Ushikubo, T., Kita, N.T., and Weisberg, M.K. (2015) Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: influence of dust enrichment and H2O during chondrule formation. Geochimica et Cosmochimica Acta, 148, 228–250.Google Scholar

  • Trail, D., Watson, E.B., and Tailby, N.D. (2011) The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature, 480, 79–82.Google Scholar

  • Treiman, A.H. (2003) Chemical compositions of martian basalts (shergottites): Some inferences on basalt formation, mantle metasomatism, and differentiation in Mars. Meteoritics and Planetary Science, 38, 1849–1864.Google Scholar

  • Treiman, A.H. (2007) Geochemistry of Venus’ surface: Current limitations as future opportunities. In L.W. Esposito, E.R. Stofan, and T.E. Cravens, Eds., Exploring Venus as a Terrestrial Planet. American Geophysical Union, Washington, D.C., doi: .CrossrefGoogle Scholar

  • Tsuda, Y., Yoshikawa, M., Abe, M., Minamino, H., and Nakazawa, S. (2013) System design of the hayabusa 2—asteroid sample return mission to 1999 ju3. Acta Astronautica, 91, 356–362.Google Scholar

  • Van Schmus, W.R., and Wood, J.A. (1967) A chemical-petrologic classification for the chondritic meteorites. Geochimica et Cosmochimica Acta, 31, 747–765.Google Scholar

  • Villanueva, G.L., Mumma, M.J., Novák, R.E., Käufl, H.U., Hartogh, P., Encrenaz, T., and Smith, M.D. (2015) Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs. Science, 348, 218–221.Google Scholar

  • Wadhwa, M. (2008) Redox conditions on small bodies, the Moon and Mars. Reviews in Mineralogy and Geochemistry, 68, 493–510.Google Scholar

  • Weitz, C.M., Rutherford, M.J., and Head, J.W. (1997) Oxidation states and ascent history of the Apollo 17 volcanic beads as inferred from metal-glass equilibria. Geochimica et Cosmochimica Acta, 61, 2765–2775.Google Scholar

  • Westphal, A.J., Fakra, S.C., Gainsforth, Z., Marcus, M.A., Ogliore, R.C., and Butterworth, A.L. (2009) Mixing fraction of inner solar system material in Comet 81P/Wild2. The Astrophysical Journal, 694, 18.Google Scholar

  • Wong, J., Lytle, F.W., Messmer, R.P., and Maylotte, D.H. (1984) K-edge absorption spectra of selected vanadium compounds. Physical Review B, 30, 5596.Google Scholar

  • Woodland, A.B., and Koch, M. (2003) Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth and Planetary Science Letters, 214, 295–310.Google Scholar

  • Xirouchakis, D., Draper, D.S., Schwandt, C.S., and Lanzirotti, A. (2002) Crystallization conditions of Los Angeles, a basaltic Martian meteorite. Geochimica et Cosmochimica Acta, 66, 1867–1880.Google Scholar

  • Zanda, B., Bourot-Denise, M., Perron, C., and Hewins, R.H. (1994) Origin and metamorphic redistribution of silicon, chromium, and phosphorus in the metal of chondrites. Science, 265, 1846–1849.Google Scholar

  • Zeigler, R.A., Jolliff, B., Korotev, R.K., Rumble, D. III, Carpenter, P.K., and Wang, A. (2008) Petrology, geochemistry, and likely provenance of unique achondrite Graves Nunataks 06128. Lunar and Planetary Science Conference, 39, Abstract 2456.Google Scholar

  • Zhang, S., Livi, K.J., Gaillot, A.C., Stone, A.T., and Veblen, D.R. (2010) Determination of manganese valence states in (Mn3+, Mn4+) minerals by electron energy-loss spectroscopy. American Mineralogist, 95, 1741–1746.Google Scholar

  • Zhang, Y., Benoit, P.H., and Sears, D.W. (1995) The classification and complex thermal history of the enstatite chondrites. Journal of Geophysical Research: Planets, 100, 9417–9438.Google Scholar

  • Zhao, D., Essene, E.J., and Zhang, Y. (1999) An oxygen barometer for rutile–ilmenite assemblages: oxidation state of metasomatic agents in the mantle. Earth and Planetary Science Letters, 166, 127–137.Google Scholar

  • Zolensky, M.E., Bourcier, W.L., and Gooding, J.L. (1989) Aqueous alteration on the hydrous asteroids: Results of EQ3/6 computer simulations. Icarus, 78, 411–425.Google Scholar

  • Zolensky, M., Barrett, R., and Browning, L. (1993) Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites. Geochimica et Cosmochimica Acta, 57, 3123–3148.Google Scholar

  • Zolotov, M.Y., Mironenko, M.V., and Shock, E.L. (2006) Thermodynamic constraints on fayalite formation on parent bodies of chondrites. Meteoritics and Planetary Science, 41, 1775–1796.Google Scholar

  • Zolotov, M.Y., Sprague, A.L., Hauck, S.A., Nittler, L.R., Solomon, S.C., and Weider, S.Z. (2013) The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. Journal of Geophysical Research: Planets, 118, 138–146Google Scholar

About the article

Received: 2015-11-30

Accepted: 2016-04-14

Published Online: 2016-09-01

Published in Print: 2016-09-01

Citation Information: American Mineralogist, Volume 101, Issue 9, Pages 1928–1942, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5638.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in