Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 101, Issue 9

Issues

Vránaite, ideally Al16B4Si4O38, a new mineral related to boralsilite, Al16B6Si2O37, from the Manjaka pegmatite, Sahatany Valley, Madagascar

Jan Cempírek / Edward S. Grew
  • Corresponding author
  • School of Earth and Climate Sciences, University of Maine, 5790 Bryand Center, Orono, Maine 04469 United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anthony R. Kampf
  • Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007 United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chi Ma
  • Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Milan Novák / Petr Gadas / Radek Škoda / Michaela Vašinová-Galiová / Federico Pezzotta / Lee A. Groat
  • Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergey V. Krivovichev
  • Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034 St. Petersburg, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-09-01 | DOI: https://doi.org/10.2138/am-2016-5686

Abstract

The system B2O3-Al2O3-SiO2 (BAS) includes two ternary phases occurring naturally, boromullite, Al9BSi2O19, and boralsilite, Al16B6Si2O37, as well as synthetic compounds structurally related to mullite. The new mineral vránaite, a third naturally occurring anhydrous ternary BAS phase, is found with albite and K-feldspar as a breakdown product of spodumene in the elbaite-subtype Manjaka granitic pegmatite, Sahatany Valley, Madagascar. Boralsilite also occurs in this association, although separately from vránaite; both minerals form rare aggregates of subparallel prisms up to 100 μm long. Optically, vránaite is biaxial (–), nα = 1.607(1), nβ = 1.634(1), nγ = 1.637(1) (white light), 2Vx(calc) = 36.4°, Xc; Ya; Z = b. An averaged analysis by EMP and LA-ICP-MS (Li, Be) gives (wt%) SiO2 20.24, B2O3 11.73, Al2O3 64.77, BeO 1.03, MnO 0.01, FeO 0.13, Li2O 1.40, Sum 99.31. Raman spectroscopy in the 3000–4000 cm−1 region rules out the presence of significant OH or H2O. Vránaite is monoclinic, space group I2/m, a = 10.3832(12), b = 5.6682(7), c = 10.8228(12) Å, β = 90.106(11)°; V = 636.97(13) Å3, Z = 1. In the structure [R1 = 0.0416 for 550 Fo > 4σFo], chains of AlO6 octahedra run parallel to [010] and are cross-linked by Si2O7 disilicate groups, BO3 triangles, and clusters of AlO4 and two AlO5 polyhedra. Two Al positions with fivefold coordination, Al4 and Al5, are too close to one another to be occupied simultaneously; their refined site-occupancy factors are 54% and 20% occupancy, respectively. Al5 is fivefold-coordinated Al when the Al9 site and both O9 sites are occupied, a situation giving a reasonable structure model as it explains why occupancies of the Al5 and O9 sites are almost equal. Bond valence calculations for the Al4 site suggest Li is likely to be sited here, whereas Be is most probably at the Al5 site. One of the nine O sites is only 20% occupied; this O9 site completes the coordination of the Al5 site and is located at the fourth corner of what could be a partially occupied BO4 tetrahedron, in which case the B site is shifted out of the plane of the BO3 triangle. However, this shift remains an inference as we have no evidence for a split position of the B atom. If all sites were filled (Al4 and Al5 to 50%), the formula becomes Al16B4Si4O38, close to Li1.08Be0.47Fe0.02Al14.65B3.89Si3.88O36.62 calculated from the analyses assuming cations sum to 24. The compatibility index based on the Gladstone-Dale relationship is 0.001 (“superior”). Assemblages with vránaite and boralsilite are inferred to represent initial reaction products of a residual liquid rich in Li, Be, Na, K, and B during a pressure and chemical quench, but at low H2O activities due to early melt contamination by carbonate in the host rocks. The two BAS phases are interpreted to have crystallized metastably in lieu of dumortierite in accordance with Ostwald Step Rule, possibly first as “boron mullite,” then as monoclinic phases. The presence of such metastable phases is suggestive that pegmatites crystallize, at least partially, by disequilibrium processes, with significant undercooling, and at high viscosities, which limit diffusion rates.

Keywords: Vránaite; boralsilite; Madagascar; pegmatite; new mineral; structural complexity; Ostwald step rule; borosilicate minerals

References cited

  • Åhman, J., Svensson, G., and Grins, J. (1997) Lithium aluminium borate, LiAl7B4O17. Acta Chemica Scandinavica, 51, 1045–1050.Google Scholar

  • Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C., Eds. (2003) Handbook of Mineralogy, vol. II. Mineralogical Society of America, Chantilly, Virginia.Google Scholar

  • Bish, D.L., and Burnham, C.W. (1992) Rietveld refinement of the crystal structure of fibrolitic sillimanite using neutron powder diffraction data. American Mineralogist, 77, 374–379.Google Scholar

  • Buick, I., Grew, E.S., Armbruster, T., Medenbach, O., Yates, M.G., Bebout, G.E., and Clarke, G.L. (2008) Boromullite, Al9BSi2O19, a new mineral from granulite-facies metapelites, Mount Stafford, central Australia and a natural analogue of a “boron-mullite.” European Journal of Mineralogy, 20, 935–950.Google Scholar

  • Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G., and Spagna, R. (2012) SIR2011: a new package for crystal structure determination and refinement. Journal of Applied Crystallography, 45, 357–361.Google Scholar

  • Cempírek, J. (2003) Mineral associations and chemical composition of dumortierite in granitic pegmatites. M.S. Diplomová práce, Masaryk University, Brno (in Czech).Google Scholar

  • Cempírek, J., and Novák, M. (2005) A green dumortierite from Kutná Hora, Moldanubicum, Czech Republic: spectroscopic and structural study. Crystallization Processes in Granitic Pegmatites, Elba, Italy, 4–5.Google Scholar

  • Cempírek, J., Novák, M., Dolnícek, Z., Kotková, J., and Škoda, R. (2010) Crystal chemistry and origin of grandidierite, ominelite, boralsilite, and werdingite from the Bory Granulite Massif, Czech Republic. American Mineralogist, 95, 1533–1547.Google Scholar

  • Cempírek, J., Grew, E.S., Kampf, A.R., Ma, C., Novák, M., Gadas, P., Škoda, R., Vašinová-Galiová, M., Pezzotta, F., and Groat, L.A. (2016) Vránaite, IMA 2015-084. CNMNC Newsletter No. 29, February 2016, page 200; Mineralogical Magazine, 80, 199–205.Google Scholar

  • Cerný, P. (2000) Constitution, petrology, affiliations and categories of miarolitic pegmatites. Memoire della Società Italiana di Scienze Naturali e dei Museo Civica di Storia Naturale di Milano, 30, 5–12.Google Scholar

  • Fischer, R.X., and Schneider, H. (2008) Crystal chemistry of borates and borosilicates with mullite-type structures: a review. European Journal of Mineralogy, 20, 917–933.Google Scholar

  • Fuchs, Y., Ertl, A., Hughes, J.M., Prowatke, S., Brandstaetter, F., and Schuster, R. (2005) Dumortierite from the Gfoehl unit, lower Austria: chemistry, structure and infra-red spectroscopy. European Journal of Mineralogy, 17, 173–183.Google Scholar

  • Galliski, M.A., Márques-Zavalía, M.F., Lira, R., Cempírek, J., and Škoda, R. (2012) Mineralogy and origin of the dumortierite-bearing pegmatites of Virorco, San Luis, Argentina. Canadian Mineralogist, 50, 873–894.Google Scholar

  • Gatta, G.D., Rotiroti, N., Fisch, M., and Armbruster, T. (2010) Stability at high pressure, elastic behavior and pressure-induced structural evolution of “Al5BO9,” a mullite-type ceramic material. Physics and Chemistry of Minerals, 37, 227–236.Google Scholar

  • Gatta, G.D., Lotti, P., Merlini, M., Liermann, H.-P., and Fisch, M. (2013) High-pressure behavior and phase stability of Al5BO9, a mullite-type ceramic material. Journal of the American Ceramic Society, 96, 2583–2592.Google Scholar

  • Goldsmith, J.R. (1953) A “simplexity principle” and its relation to “ease” of crystallization. Journal of Geology, 61, 439–451.Google Scholar

  • Grew, E.S. (1996) Borosilicates (exclusive of tourmaline) and boron in rock-forming minerals in metamorphic environments. In E.S. Grew and L.M. Anovitz, Eds., Boron: Mineralogy, Petrology and Geochemistry, 33, p. 387–502. Reviews in Mineralogy, Mineralogical Society of America, Chantilly, Virginia.Google Scholar

  • Grew, E.S., McGee, J.J., Yates, M.G., Peacor, D.R., Rouse, R.C., Huijsmans, J.P.P., Shearer, C.K., Wiedenbeck, M., Thost, D.E., and Su, S.-C. (1998) Boralsilite (Al-16B6Si2O37): A new mineral related to sillimanite from pegmatites in granulite-facies rocks. American Mineralogist, 83, 638–651.Google Scholar

  • Grew, E.S., Graetsch, H., Pöter, B., Yates, M.G., Buick, I., Bernhardt, H.-J., Schreyer, W., Werding, G., Carson, C.J., and Clarke, G.L. (2008) Boralsilite, Al16B6Si2O37, and “boron-mullite”: Compositional variations and associated phases in experiment and nature. American Mineralogist, 93, 283–299.Google Scholar

  • Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar

  • Krivovichev, S.V. (2012) Topological complexity of crystal structures: quantitative approach. Acta Crystallographica, A68, 393–398.Google Scholar

  • Krivovichev, S.V. (2013) Structural complexity of minerals: information storage and processing in the mineral world. Mineralogical Magazine, 77, 275–326.Google Scholar

  • Krivovichev, S.V. (2016) Structural complexity and configurational entropy of crystals. Acta Crystallographica, B72, 274–276.Google Scholar

  • Letort, Y. (1952) Contribution à l’étude de la synthèse de la mullite. Transactions of the International Ceramic Congress, 19–32.Google Scholar

  • Li, J., and Chou, I-M. (2015) An occurrence of metastable cristobalite in spodumene-hosted crystal-rich inclusions from Jiajika pegmatite deposit, China, Journal of Geochemical Exploration, http://dx.doi.org/10.1016/j.gexplo.2015.10.012.Crossref

  • London, D. (1984) Experimental phase equilibria in the system LiAlSiO4–SiO2-H2O: A petrogenetic grid for lithium-rich pegmatites. American Mineralogist, 69, 995–1004.Google Scholar

  • London, D. (2008) Pegmatites. Special Publications. Canadian Mineralogist, 10, 1–347.Google Scholar

  • London, D. (2014) A petrologic assessment of internal zonation in granitic pegmatites. Lithos, 184-187, 74–104.Google Scholar

  • London, D., Morgan, G.B. IV, and Wolf, M.B. (1996) Boron in granitic rocks and their contact aureoles. In E.S. Grew and L.M. Anovitz, Eds., Boron: Mineralogy, Petrology and Geochemistry, 33, p. 299–330. Reviews in Mineralogy, Mineralogical Society of America, Chantilly, Virginia.Google Scholar

  • Lührs, H., Fischer, R.X., and Schneider, H. (2012) Boron mullite: Formation and basic characterization. Materials Research Bulletin, 47, 4031–4042.Google Scholar

  • Lührs, H., Senyshyn, A., King, S.P., Hanna, J.V., Schneider, H., and Fischer, R.X. (2013) Neutron diffraction and 11B solid state NMR studies of the crystal structure of B-doped mullite. Zeitschrift für Kristallographie, 228, 457–466.Google Scholar

  • Lührs, H., Soellradl, S., King, S.P., Hanna, J.V., Konzett, J., Fischer, R.X., and Schneider, H. (2014) Ambient and high-pressure synthesis, composition, and crystal structure of B-mullites. Crystal Research and Technology, 49, 21–31.Google Scholar

  • Ma, C., and Rossman, G.R. (2008) Barioperovskite, BaTiO3, a new mineral from the Benitoite Mine, California. American Mineralogist, 93, 154–157.Google Scholar

  • Ma, C., and Rossman, G.R. (2009) Tistarite, Ti2O3, a new refractory mineral from the Allende meteorite. American Mineralogist, 94, 841–844.Google Scholar

  • Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its application. Canadian Mineralogist, 19, 441–450.Google Scholar

  • McGee, J.J., and Anovitz, L.M. (1996) Electron probe microanalysis of geologic materials for boron. In E.S. Grew and L.M. Anovitz, Eds., Boron: Mineralogy, Petrology, and Geochemistry, 33, p. 771–788 (second printing 2002). Reviews in Mineralogy, Mineralogical Society of America, Chantilly, Virginia.Google Scholar

  • Merlet, C. (1994) An accurate computer correction program for quantitative electron-probe microanalysis. Mikrochimica Acta, 114, 363–376.Google Scholar

  • Niven, M.L., Waters, D.J., and Moore, J.M. (1991) The crystal structure of werdingite, (Mg, Fe)2Al12(Al, Fe)2Si4(B, Al)4O37, and its relationship to sillimanite, mullite, and grandidierite. American Mineralogist, 76, 246–256.Google Scholar

  • Novák, M., Cempírek, J., Gadas, P., Škoda, R., Vašinová-Galiová, M., Pezzotta, F., and Groat, L.A. (2015) Boralsilite and Li, Be-bearing “boron mullite” Al8B2Si2O19, breakdown products of spodumene from the Manjaka pegmatite, Sahatany Valley, Madagascar. Canadian Mineralogist, 53, 357–374.Google Scholar

  • Pattison, D.R.M. (1992) Stability of andalusite and sillimanite and the Al2SiO5 triple point: Constraints from the Ballachulish aureole, Scotland. Journal of Geology, 100, 423–446.Google Scholar

  • Peacor, D.R., Rouse, R.C., and Grew, E.S. (1999) Crystal structure of boralsilite and its relation to a family of boroaluminosilicates, sillimanite and andalusite. American Mineralogist, 84, 1152–1161.Google Scholar

  • Pieczka, A., Evans, R.J., Grew, E.S., Groat, L.A., Ma, C., and Rossman, G.R. (2013) The dumortierite supergroup. I. A new nomenclature for the dumortierite and holtite groups. Mineralogical Magazine, 77, 2825–2839.Google Scholar

  • Pöter, B., Werding, G., Schreyer, W., and Bernhardt, H.J. (1998) Synthesis and properties of the new borosilicate mineral boralsilite. Berichte der Deutschen Mineralogischen Gesellschaft, 1, 220.Google Scholar

  • Schneider, H., Schreuer, J., and Hildmann, B. (2008) Structure and properties of mullite—A review. Journal of the European Ceramic Society, 28, 329–344.Google Scholar

  • Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.Google Scholar

  • Wadoski, E.R., Grew, E.S., and Yates, M.G. (2011) Compositional evolution of tourmaline-supergroup minerals from granitic pegmatites in the Larsemann Hills, East Antarctica. Canadian Mineralogist, 49, 381–405.Google Scholar

  • Werding, G., and Schreyer, W. (1984) Alkali-free tourmaline in the system MgO-Al2O3-B2O3-SiO2-H2O. Geochimica et Cosmochimica Acta, 48, 1331–1344.Google Scholar

  • Werding, G., and Schreyer, W. (1990) Synthetic dumortierite: its PTX-dependent compositional variations in the system Al2O-B2O3-SiO2-H2O. Contributions to Mineralogy and Petrology, 105, 11–24.Google Scholar

  • Werding, G., and Schreyer, W. (1992) Synthesis and stability of werdingite, a new phase in the system MgO-Al2O3-B2O3-SiO2 (MABS), and another new phase in the ABS-system. European Journal of Mineralogy, 4, 193–207.Google Scholar

  • Werding, G., and Schreyer, W. (1996) Experimental studies on borosilicates and selected borates. In E.S. Grew and L.M. Anovitz, Eds., Boron: Mineralogy, Petrology, and Geochemistry, 33, p. 117–163 (second printing 2002). Reviews in Mineralogy, Mineralogical Society of America, Chantilly, Virginia.Google Scholar

  • Wodara, U., and Schreyer, W. (2001) X-site vacant Al-tourmaline: a new synthetic end-member. European Journal of Mineralogy, 13, 521–532.Google Scholar

About the article

Received: 2016-01-19

Accepted: 2016-04-21

Published Online: 2016-09-01

Published in Print: 2016-09-01


Citation Information: American Mineralogist, Volume 101, Issue 9, Pages 2108–2117, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5686.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in