Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

See all formats and pricing
More options …
Volume 101, Issue 9


Gaussian thermoluminescence in long-range disordered K-feldspar

Luis Sánchez-Muñoz / Javier García-Guinea / Peter D. Townsend
  • School of Engineering, University of Sussex, Brighton, United Kingdom of Great Britain and Northern Ireland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tjipto Juwono / Ana Cremades
  • Dipartment, Física de Materiales, Fac. Físicas, University Complex Madrid, 28040 Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-09-01 | DOI: https://doi.org/10.2138/am-2016-5697


The thermoluminescence behavior of long-range ordered crystals is usually explained by the band structure model, using first- and second-order kinetics. However, feldspars have order-disorder phenomena and twinning, and consequently these mathematical descriptions are not helpful in most cases. In this work, the thermally stimulated intrinsic blue luminescence at 440 nm from X-ray induced defects of the K-rich feldspars is used to show a progressive behavior change along the order-disorder series. It is observed a gradual conversion of the TL signal from a very asymmetric peak with exponential rise and power law decay in microcline and orthoclase, where a t coefficient in log-log plots decreases with twin/domain size, to a more symmetric signal in a partially disordered sanidine, up to reach a completely symmetric Gaussian peak in fully disordered sanidine. These results are compatible with the Bässler’s model of disorder, which suggest that atomic disorder involves the transformation of delocalized bands first into band tails as the source of electron traps, and later in localized density of states following a Gaussian distribution.

Keywords: K-feldspars; thermoluminescence; order-disorder series; density of states

References cited

  • Arkhipov, V.I., Emelianova, E.V., Kadashchuk, I., Blonsky, I., Nešpurek, S., Weiss, D.S., and Bässler, H. (2002) Polaron effects on thermally stimulated photoluminescence in disordered organic systems. Physical Review Letters, 65, 165218.Google Scholar

  • Baril, M.R., and Huntley, D.J. (2003) Infrared stimulated luminescence and phosphorescence spectra of irradiated feldspars. Journal of Physics: Condensed Matter, 15, 8029–8048.Google Scholar

  • Bässler, H. (1981) Localized states and electronic transport in single component organic solids with diagonal disorder. Physics Status Solidi, 107, 9–53.Google Scholar

  • Bässler, H., Schönherr, G., Abkowitz, M., and Pai, D.M. (1982) Hopping transport in prototypical organic glasses. Physical Review B, 26, 3105–3113.Google Scholar

  • Clarke, M.L., and Rendell, H.M. (1997) Infra-red stimulated luminescence spectra of alkali feldspars. Radiation Measurements, 27, 221–236.Google Scholar

  • Clarke, M.L., Rendell, H.M., Sánchez-Muñoz, L., and García-Guinea, J. (1997) A comparison of luminescence spectra and structural composition of perthitic feldspars. Radiation Measurements, 27, 137–144.Google Scholar

  • García-Guinea, J., Rendell, H., and Sánchez-Muñoz, L. (1997) Luminescence spectra of alkali feldspars: some relationships between structural features and luminescence emission. Radiation Protection Dosimetry, 66, 395–398.Google Scholar

  • Glöckle, W.G., and Nonnenmacher, T.F. (1994) Fractional relaxation and the time-temperature superposition principle. Rheologica Acta, 33, 337–343.Google Scholar

  • Jain, M., and Ankjærgaard, C. (2011) Towards a non-fading signal in feldspar: Insight into charge transport and tunnelling from time-resolved optically stimulated luminescence. Radiation Measurement, 46, 292–309.Google Scholar

  • Jonscher, A.K. (1992) The universal dielectric response and its physical significance. IEEE Transactions on Electric Insulation, 27, 407–423.Google Scholar

  • Kadashchuk, A., Ostapenko, N., Zaika, V., and Nešpurek, S. (1998) Low-temperature thermoluminescence in poly(methyl-phenylsilylene). Chemical Physics, 234, 285–296.Google Scholar

  • Kitis, G. (2001) TL glow-curve deconvolution functions for various kinetic orders and continuous trap distribution: Acceptance criteria for E and s values. Journal of Radioanalytical Nuclear Chemistry, 247, 697–703.Google Scholar

  • Kitis, G., Gomez-Ros, J.M., and Tuyn, J.W.N. (1998) Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics. Journal of Physics D: Applied Physics, 31, 2636–2641.Google Scholar

  • Krbetschek, M.R., Götze, J., Dietrich, A., and Trautmann, T. (1997) Spectral information from minerals relevant for luminescence dating. Radiation Measurement, 27, 695–748.Google Scholar

  • Li, B., and Li, S.-H. (2013) The effect of band-tail states on the thermal stability of the infrared stimulated luminescence from K-feldspar. Journal of Luminescence, 136, 5–10.Google Scholar

  • Ngai, K.L, Jonscher, A.K., and White, C.T. (1979) Origin of the universal dielectric response in condensed matter. Nature, 277, 185.Google Scholar

  • Poolton, N.R.J., Ozanyan, K.B., Wallinga, W., Murray, A.S., and Bøtter-Jensen, L. (2002) Electrons in feldspar II: a consideration of the influence of conduction band-tail states on luminescence processes. Physics and Chemistry of Minerals, 29, 217–225.Google Scholar

  • Sánchez-Muñoz, L., García-Guinea, J., Sanz, J., Correcher, V., and Delgado, A. (2006a) Ultraviolet luminescence from defect complexes in the twin boundaries of K-feldspar. Chemistry of Materials, 18, 3336–3342.Google Scholar

  • Sánchez-Muñoz, L., Correcher, V., Turrero, M.J., Cremades, A., and García-Guinea, J. (2006b) Visualization of elastic strain fields by the spatial distribution of the blue luminescence in a twinned microcline crystal. Physics and Chemistry of Minerals, 33, 639–650.Google Scholar

  • Sánchez-Muñoz, L., García-Guinea, J., Correcher, V., and Delgado, A. (2007a) Thermally stimulated power law relaxation of radiation-induced defects in K-feldspar. Journal of Physics: Condensed Matter, 19, 046202.Google Scholar

  • Sánchez-Muñoz, L., García-Guinea, J., Correcher, V., and Delgado, A. (2007b) Radiation-induced self-structuring of radiative defects complexes in a K-feldspar crystal: A study by thermoluminescence. Radiation Measurement, 42, 775–779.Google Scholar

  • Sánchez-Muñoz, L., Correcher, V., García-Guinea, J., and Delgado, A. (2007c) Luminescence at 400 and 440 nm in sanidine feldspar from original and X-ray-induced defects. Nuclear Instruments and Methods in Physics Research A, 580, 679–682.Google Scholar

  • Sánchez-Muñoz, L., García-Guinea, J., Zagorsky, V.Ye., Juwono, T., Modreski, P.J., Cremades, A., Van Tendeloo, G., and De Moura, O.J.M. (2012) The evolution of twin patterns in perthitic K-feldspar from granitic pegmatites. Canadian Mineralogist, 50, 989–1024.Google Scholar

  • Sánchez-Muñoz, L., Sanz, J., Sobrados, I., and Gan, Z.-H. (2013) Medium-range order in disordered K-feldspars by multinuclear NMR. American Mineralogist, 98, 2112–2131.Google Scholar

  • Schrimpf, A., Boekstiegel, C., Stöckmann, H.-J., Bornemanny, T., Ibbeken, K., Kraft, J., and Herkert, B. (1996) Thermally stimulated luminescence and conductivity of doped Ar solids. Journal of Physics: Condensed Matter, 8, 3677–3689.Google Scholar

  • Townsend, P.D., and Rowlands, A.P. (1999) Extended defect models for thermoluminescence. Radiation Protection Dosimetry, 84, 7–12.Google Scholar

  • Visocekas, R., Spooner, N.A., Zink, A., and Blanc, P. (1994) Tunnel, afterglow, fading and infrared emission in thermoluminescence of feldspars. Radiation Measurement, 23, 377–385.Google Scholar

  • Wintle, A.G. (1997) Luminescence dating: Laboratory procedures and protocols. Radiation Measurements, 27, 769–817.Google Scholar

  • Zhao, Y., Zhou, Y., Jiang, Y., Zhou, W., Finch, A.A., Townsend, P.D., and Wang, Y. (2015) Ion size effects on thermoluminescence of terbium and europium doped magnesium orthosilicate. Journal of Materials Research, 30, 3443–3452.Google Scholar

About the article

Received: 2016-01-29

Accepted: 2016-05-29

Published Online: 2016-09-01

Published in Print: 2016-09-01

Citation Information: American Mineralogist, Volume 101, Issue 9, Pages 2118–2122, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2016-5697.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in