Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 102, Issue 1


A new formula and crystal structure for nickelskutterudite, (Ni,Co,Fe)As3, and occupancy of the icosahedral cation site in the skutterudite group

Benjamin N. Schumer
  • Corresponding author
  • Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721-0077, United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcelo B. Andrade
  • São Carlos Institute of Physics, University of São Paulo, Caixa Postal 369, 13560-970, São Carlos, São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stanley H. Evans
  • Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721-0077, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert T. Downs
  • Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721-0077, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-03 | DOI: https://doi.org/10.2138/am-2017-5615


We propose a new formula for the mineral nickelskutterudite, based on our observation that either (or both) Co or Fe3+ are essential structure constituents. The crystal structure of nickelskutterudite, (Ni,Co,Fe)As3, cubic, Im3¯, Z = 8: a = 8.2653(6) Å, V = 564.65(7) Å3, has been refined to R1 = 1.4% for 225 unique reflections I > 2σ(I) collected on a Bruker X8 four-circle diffractometer equipped with fine-focus, sealed tube MoKα radiation and an APEX-II CCD detector. This is the first report of the crystal structure of nickelskutterudite. Nickelskutterudite, a member of the skutterudite group of isostructural minerals, adopts a distorted perovskite structure with notably tilted octahedra and an unoccupied to partially occupied icosahedral metal site. In the structure of nickelskutterudite, there is one metal (B) site occupied by Ni, Co, or Fe in octahedral coordination with six As atoms. Procrystal electron density analysis shows each As anion is bonded to two cations and two As anions, resulting in a four-membered ring of bonded As with edges 2.547 and 2.475 Å. The extreme tilting of BAs6 octahedra is likely a consequence of the As-As bonding. The nickelskutterudite structure differs from the ideal perovskite structure (A4B4X12) in that As4 anion rings occupy three of the four icosahedral cages centered on the A sites. There are reported synthetic phases isomorphous with skutterudite with the other A site completely occupied by a cation (AB4X12).

Electron microprobe analyses of nickelskutterudite gave an empirical chemical formula of (Ni0.62Co0.28Fe0.12)Σ1.02(As2.95S0.05)Σ3.00 normalized to three anions. Pure NiAs3 nickelskutterudite, natural or synthesized, has not been reported. In nature, nickelskutterudite is always observed with significant Co and Fe, reportedly because all non-bonded valence electrons must be spin-paired. This suggests that nickelskutterudite must contain Co3+ and Fe2+, consistent with previous models since Ni4+ cannot spin-pair its seven non-bonded electrons, Co3+ and Fe2+, which can spin-pair all non-bonded electrons, are required to stabilize the structure. No anion deficiencies were found in the course of this study so, including the structurally necessary Co and Fe, the chemical formula of nickelskutterudite (currently given as NiAs3–x by the IMA) should be considered (Ni,Co,Fe)As3.

Keywords: Skutterudite; icosahedral metal site; cobalt; nickel; octahedral tilt

References cited

  • Aleksandrov, K.S., and Beznosikov, B.V. (2007) Crystal chemistry and prediction of compounds with a structure of skutterudite type. Kristallografiya, 52, 1, 32–40.Google Scholar

  • Bader, R.F.W. (1998) A bond path: A universal indicator of bonded interactions. Journal of Physical Chemistry A, 102, 7314–7323.Google Scholar

  • Borshchevsky, A., Caillat, T., and Fleurial, J.-P. (1996) Solid solution formation: Improving the thermoelectric properties of skutterudites. Proceedings of the 15th International Conference on Thermoelectrics, 1996, 112–116.Google Scholar

  • Braun, D.J., and Jeitschko, W. (1980) Ternary arsenides with LaFe4P12-type structure. Journal of Solid State Chemistry, 32, 357–363.Google Scholar

  • Breithaupt, J.F.A. (1827) Ueber eine neue Kies-Spezies von Skutterud. Annaler der Physik und Chemie, 9, 115–116.Google Scholar

  • Bruker (2007) APEX2, SAINT, and TWINABS. Bruker AXS, Madison, Wisconsin.Google Scholar

  • Chakoumakos, B.C., and Sales, B.C. (2006) Skutterudites: Their structural response to filling. Journal of Alloys and Compounds, 407, 87–93.Google Scholar

  • Downs, R.T., Andalman, A., and Hudacsko, M. (1996) The coordination numbers of Na and K atoms in low albite and microcline as determined from a procrystal electron density distribution. American Mineralogist, 81, 1344–1349.Google Scholar

  • Evers, C.B.H., Jeitschko, W., Boonk, L., Braun, D.J., Ebel, T., and Scholz, U.D. (1995) Rare earth and uranium transition metal pnictides with LaFe4P12 structure. Journal of Alloys and Compounds, 224, 184–189.Google Scholar

  • Fukuoka, H., and Yamanaka, S. (2009) High-pressure synthesis, structure and electrical properties of iodine filled skutterudite I0.9Rh4Sb12-first anion-filled skutterudite. Chemistry of Materials, 22, 47–51.Google Scholar

  • Gibbs, G.V., Downs, R.T., Cox, D.F., Ross, N.L., Prewitt, C.T., Rosso, K.M., Lippmann, T., and Kirfel, A. (2008) Bonded interactions and the crystal chemistry of minerals: A review. Zeitschrift für Kristallographie, 223, 1–40.Google Scholar

  • Glazer, A.M. (1972) The classification of tilted octahedra in perovskites. Acta Crystallographica, B28, 3384–3392.Google Scholar

  • Grytsiv, A., Rogl, P., Berger, St., Paul, Ch., Michor, H., Bauer, E., Hilscher, G., Godart, C, Knoll, P., Musso, M., Lottermoser, W., Saccone A., Ferro, R., Roisnel, T., and Noel, H. (2002) A novel skutterudite phase in the Ni-Sb-Sn system: Phase equilibria and physical properties. Journal of Physics: Condensed Matter, 14, 7071–7090.Google Scholar

  • Haidinger, W. (1845) Zwei Klasse: Geogenide. XIII. Ordnung. Kiese III. Kobaltkies. Skutterudit, in Handbuch der Bestimmenden Mineralogie, Bei Braumüller und Seidel, Wien, 559–562.Google Scholar

  • Holmes, R.J. (1947) Higher mineral arsenides of cobalt, nickel, and iron. Geological Society of America Bulletin, 58, 299–392.Google Scholar

  • Kjekshus, A., and Rakke, T. (1974) Compounds with the skutterudite type crystal structure. III. structural data for arsenides and antimonides. Acta Chemica Scandanavica A 28, 1, 99–103.Google Scholar

  • Mandel, M., and Donohue, J. (1971) The refinement of the crystal structure of skutterudite, CoAs3. Acta Crystallographica, B27, 2288–2289.Google Scholar

  • Mitchell, R.H. (2002) Perovskites: Modern and Ancient, 316 pp. Almaz Press, Thunder Bay.Google Scholar

  • Navrátil, J., Laufek, F., Plechácek, T., and Plášil, J. (2010) Synthesis, crystal structure and thermoelectric properties of the ternary skutterudite Fe2Pd2Sb12. Journal of Alloys and Compounds, 493, 50–54.Google Scholar

  • Nickel, E.H. (1969) The application of ligand-field concepts to an understanding of the structural stabilities and solid solution limits of sulphides and related minerals. Chemical Geology, 5, 233–241.Google Scholar

  • Oftedal, I. (1926) The crystal structure of skutterudite and related minerals. Norsk Geologisk Tidsskrift, 8, 250–257.Google Scholar

  • ——— (1928) Die Kristallstruktur von Skutterudite und Speiskobalt-Chloanthit. Zeitschrift für Kristallographie, A, 66, 517–546.Google Scholar

  • Palache, C., Berman, H., and Frondel, C. (1944) Dana’s System of Mineralogy, Vol. I, 829 pp. Wiley, New York.Google Scholar

  • Patrik, M., and Lutz, H.D. (1999) Semiempirical band structure calculations on skutterudite-type compounds. Physical Chemistry and Mineralogy, 27, 41–46.Google Scholar

  • Pauling, L. (1978) Covalent chemical bonding of transition metals in pyrite, cobaltite, skutterudite, millerite and related minerals. Canadian Mineralogist, 16, 447–452.Google Scholar

  • Ramsdell, L.S. (1925) The crystal structure of some metallic sulfides. American Mineralogist, 10, 9, 281–304.Google Scholar

  • Roseboom, E.H. (1962) Skutterudites (Co,Ni,Fe)As3−x: Composition and cell dimensions, American Mineralogist, 47, 310–327.Google Scholar

  • Schiferl, D., and Barrett, C.S. (1969) The crystal structure of arsenic at 4.2, 78 and 299 K. Journal of Applied Crystallography, 2, 30–36.Google Scholar

  • Schmidt, Th., Kliche, G., and Lutz, H.D. (1987) Structure Refinement of skutterudite-type cobalt triantimonide, CoAs3. Acta Crystallographica, C, 43, 1678–1679.Google Scholar

  • Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.Google Scholar

  • Shirotani, I., Hayashi, A., Takeda, K., Nakada, R., and Ohishi, Y. (2006) X-ray study with synchrotron radiation for filled skutterudite YbFe4P12 at ambient and high pressures. Physica B, 382, 8–13.Google Scholar

  • Smith, PM., Leadbetter, A.J., and Apling, A.J. (1974) The structures of orthorhombic and vitreous arsenic. Philosophical Magazine, 31, 57–64.Google Scholar

  • Spiridonov, E.M., Gritsenko, Yu.D., and Kulikova, I.M. (2007) Ferrodkutterudite (Fe,Co) As3: A new mineral species from the dolomite-calcite veins of Noril’sk ore field. Doklady Earth Sciences, 417, 8, 1278–1280.Google Scholar

  • Takeda, K., Sato, S., Hayashi, J., Sekine, C., and Shirotani, I. (2007) Crystal structure of a new superconductor LaxRh4P12 prepared at high pressure. Journal of Magnetism and MagneticMaterials, 310, e1–e3.Google Scholar

  • Takizawa, H., Miura, K., Ito, M., Suzuki, T., and Endo, T. (1999) Atom insertion into the CoSb3 skutterudite host lattice under high pressure. Journal of Alloys and Compounds, 282, 79–83.Google Scholar

  • Ventriglia, U. (1957) Studi strutturali sugli arseniuri di cobalto. Periodico di Mineralogia, 26, 345–383.Google Scholar

  • Vollhardt, G. (1888) Versuche über Speiskobalt, Zeitschrift für Krystallographie und Mineralogie, 14, 407–408.Google Scholar

  • Waller, E., and Moses, A.J. (1893) A probably new nickel arsenide (preliminary notice). The School of Mines Quarterly, 14, 49–51.Google Scholar

  • Yang, H., Downs, R.T., and Eichler, C. (2008) Safflorite, (Co,Ni,Fe)As2, isomorpous with marcasite. Acta Crystallographica, E64, i62.Google Scholar

  • Zemni, S., Tranqui, D., Chaudouet, P., Madar, R., and Senateur, J.P. (1986) Synthesis and crystal structure of a new series of ternary phosphides in the system Tr-Co-P (Tr: Rare Earth). Journal of Solid State Chemistry, 65, 1–5.Google Scholar

About the article

Received: 2015-11-27

Accepted: 2016-08-23

Published Online: 2017-01-03

Published in Print: 2017-01-01

Citation Information: American Mineralogist, Volume 102, Issue 1, Pages 205–209, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5615.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in