Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Print + Online
See all formats and pricing
More options …
Volume 102, Issue 1


Infrared spectra of carbonate apatites: Evidence for a connection between bone mineral and body fluids

Michael E. Fleet
Published Online: 2017-01-03 | DOI: https://doi.org/10.2138/am-2017-5704


The complex asymmetric stretch (ν3) region infrared (IR) spectrum of synthetic sodium- and carbonate-bearing hydroxylapatites (CHAP) has been interpreted using overlapped Gaussian distributions for individual carbonate ion species. There is now good agreement for the distribution of carbonate ions between phosphate (type B) and c-axis channel (type A) positions using three independent methods: X-ray structure site occupancies, out-of-plane bend (ν2) band areas, and asymmetric stretch (ν3) band areas; B/A ratios for a well-crystallized CHAP sample being 0.77, 0.78, and 0.75, respectively. The reported dominance of type B carbonate ions in bone mineral and dental enamel is attributed to the anomalous shift of type A band frequencies into the spectral region of type B, resulting from the substitution of Ca2+ by Na+ in the nearest-neighbor cation shell of the channel carbonate ions. The infrared spectra show that the hydrogencarbonate (bicarbonate) ion in apatite crystals is a channel species, as are its room-temperature decomposition products, type A carbonate and labile (type L) carbonate. The research suggests that bone mineral crystals may actively communicate with body fluids through the apatite channel, pointing to a possible role for the apatite channel in mediating acid-base reactions in the body.

Keywords: Apatite structure; carbonate ion; biomineralization; biological apatite; infrared spectra; CO2 sequestration

References cited

  • Arends, J., and Davidson, C.L. (1975) HPO42 content in enamel and artificial carious lesions. Calcified Tissue Research, 18, 65–79.Google Scholar

  • Baxter, J.D., Biltz, R.M., and Pellegrino, E.D. (1966) The physical state of bone carbonate: A comparative infra-red study in several mineralized tissues. The Yale Journal of Biology and Medicine, 38, 456–470.Google Scholar

  • Bettice, J.A. (1984) Skeletal carbon dioxide stores during metabolic acidosis. American Journal of Physiology, 247, F326–F330.Google Scholar

  • Bonel, G. (1972) Contribution à l’ étude de la carbonatation des apatites. I.—Synthèse et étude des propriétés physico-chimiques des apatites carbon atées du type A. Annales de Chimie, (Paris, France), 7, 65–88.Google Scholar

  • Brudevold, F., Gardner, D.E., and Smith, F.A. (1956) Distribution of fluorine in human enamel. Journal of Dental Research, 35, 420–429.Google Scholar

  • Bushinsky, D.A., Smith, S.B., Gavrilov, K.L., Gavrilov, L.F., Li, J., and Levi-Setti, R. (2002) Acute acidosis-induced alteration in bone bicarbonate and phosphate. American Journal of Physiology–Renal Physiology, 283, F1091–F1097.Google Scholar

  • Carlström, D. (1968) Mineralogical carbonate-containing apatites. In W. E. Brown and R.A. Young, Eds., Proceedings of International Symposium on Structural Properties of Hydroxyapatite and Related Compounds, Gaithersburg, Maryland, Chap. 10.Google Scholar

  • Driessens, F.C.M., Verbeeck, R.M.H., and Heijligers, H.J.M. (1983) Some physical properties of Na- and CO3-containing apatites synthesized at high temperatures. Inorganica Chimica Acta, 80, 19–23.Google Scholar

  • Elliott, J.C. (1964) The interpretation of the infra-red absorption spectra of some carbonate-containing apatites. In R.W. Fearnhead and M.V. Stack, Eds., Tooth Enamel: Its Composition, Properties, and Fundamental Structure, pp. 20-22. John Wright & Sons Bristol, U.K.Google Scholar

  • ——— (1994) Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, 389 p. Elsevier, Amsterdam.Google Scholar

  • ——— (2002) Calcium phosphate biominerals. In M.J. Kohn, J. Rakovan, and J.M. Hughes, Eds., Phosphates, pp. 427–453. Reviews in Mineralogy and Geochemistry, 48, Mineralogical Society of America, Chantilly, Virginia.Google Scholar

  • Farlay, D., Panzcer, G., Rey, C., Delmas, P.D., and Boivin, G. (2010) Mineral maturity and crystallinity index are distinct characteristics of bone mineral. Journal of Bone and Mineral Metabolism, 28, 433–445.Google Scholar

  • Fleet, M.E. (2009) Infrared spectra of carbonate apatites: ν2-region bands. Biomaterials, 30, 1473–1481.Google Scholar

  • ——— (2012) The carbonate ion in hydroxyapatite and biological apatite. In R.B. Heimann, Ed., Calcium Phosphate: Structure, Synthesis, Properties, and Applications, pp. 41–61, Nova Science Publishers, New York.Google Scholar

  • ——— (2014a) Distribution of carbonate ions in biological apatite and excess fluorine in francolite. In M. Iafisco and J.M. Delgado-López, Eds., Apatite: Synthesis, Structural Characterization and Biomedical Applications, pp. 103–122, Nova Science Publishers, New York.Google Scholar

  • ——— (2014b) Carbonated Hydroxyapatite: Materials, Synthesis, and Applications, 268 p, Pan Stanford Publishing, Singapore.Google Scholar

  • Fleet, M.E., and Liu, X. (2003) Carbonate apatite type A synthesized at high pressure: new space group (P3¯) and orientation of channel carbonate ion. Journal of Solid State Chemistry, 174, 412–417.Google Scholar

  • ——— (2004) Location of type B carbonate ion in type A-B carbonate apatite synthesized at high pressure. Journal of Solid State Chemistry, 177, 3174–3182.Google Scholar

  • ——— (2005) Local structure of channel ions in carbonate apatite. Biomaterials, 26, 7548–7554.Google Scholar

  • ——— (2007a) Coupled substitution of type A and B carbonate in sodium-bearing apatite. Biomaterials, 28, 916–926.Google Scholar

  • ——— (2007b) Hydrogen-carbonate ion in synthetic high-pressure apatite. American Mineralogist, 92, 1764–1767.Google Scholar

  • ——— (2008a) Accommodation of the carbonate ion in fluorapatite synthesized at high pressure. American Mineralogist, 93, 1460–1469.Google Scholar

  • ——— (2008b) Type A-B carbonate chlorapatite synthesized at high pressure. Journal of Solid State Chemistry, 181, 2494–2500.Google Scholar

  • Fleet, M.E., Liu, X., and King, P.L. (2004) Accommodation of the carbonate ion in apatite: An FTIR and X-ray structure study of crystals synthesized at 2–4 GPa. American Mineralogist, 89, 1422–1432.Google Scholar

  • Fleet, M.E., Liu, X., and Liu, Xi (2011) Orientation of channel carbonate ions in apatite: Effect of pressure and composition. American Mineralogist, 96, 1148–1157.Google Scholar

  • Green, J., and Kleeman, C.R. (1991) Role of bone in regulation of systemic acid- base balance. Kidney International, 39, 9–26.Google Scholar

  • LeGeros, R.Z. (1991) Calcium Phosphates in Oral Biology and Medicine, 201 p., Karger, Basel.Google Scholar

  • LeGeros, R.Z., Trautz, O.R., Klein, E., and LeGeros, J.P. (1969) Two types of carbonate substitution in the apatite structure. Experimentia, 25, 5–7.Google Scholar

  • Libowitzky, E., and Rossman, G.R. (1996) Principles of quantitative absorbance measurements in anisotropic cystals. Physics and Chemistry of Minerals, 23, 319–327.Google Scholar

  • Liu, X., Shieh, S.R., Fleet, M.E., Zhang, L., and He, Q. (2011) Equation of state of carbonated hydroxylapatite at ambient temperature up to 10 GPa: Significance of carbonate. American Mineralogist, 96, 74–80.Google Scholar

  • Madix, R.J., Solomon, J.L., and Stöhr, J. (1988) The orientation of the carbonate anion on Ag(110). Surface Science, 197, L253–L259.Google Scholar

  • McClellan, G.H., and Lehr, J.R. (1969) Crystal chemical investigation of natural apatites. American Mineralogist, 54, 1374–1391.Google Scholar

  • Mehmel, M. (1930) Über die Struktur des Apatits. Zietschrift für Kristallographie, 75, 323–331.Google Scholar

  • Nakamoto, K. (1997) Infrared and Raman Spectra of Inorganic and Coordination compounds. Part A: Theory and Applications in Inorganic Chemistry, 387 p., 5th ed. Wiley, New York.Google Scholar

  • Náray-Szabó, S. (1930) The structure of apatite (CaF)Ca4(PO4)3. Zietschrift für Kristallographie, 75, 387–398.Google Scholar

  • Nelson, D.G.A., and Featherstone, J.D.B. (1982) Preparation, analysis, and characterization of carbonated apatites. Calcified Tissue International, 34, S69–S81.Google Scholar

  • Neuman, W.F., and Mulryan, B.J. (1967) Synthetic hydroxyapatite crystals. III. The carbonate system. Calcified Tissue Research, 1, 94–104.Google Scholar

  • Neuman, W.F., Terepka, A.R., and Triffitt, J.T. (1968) Cycling concept of exchange in bone. Calcified Tissue Research, 2, 262–270.Google Scholar

  • Palmer, L.C., Newcomb, C.J., Kaltz, S.R., Spoerke, E.D., and Stupp, S.I. (2008) Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chemical Reviews, 108, 4754–4783.Google Scholar

  • Paschalis, E.P., DiCarlo, E., Betts, F., Sherman, P., Mendelsohn, R., and Boskey, A.L. (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcified Tissue International, 59, 480–487.Google Scholar

  • Poyart, C.F., Bursaux, E., and Fréminet, A. (1975a) The bone CO2 compartment: evidence for a bicarbonate pool. Respiration Physiology, 25, 89–99.Google Scholar

  • Poyart, C.F., Fréminet, A., and Bursaux, E. (1975b) The exchange of bone CO2 in vivo. Respiration Physiology, 25, 101–107.Google Scholar

  • Rey, C., Collins, B., Goehl, T., Dickson, I.R., and Glimcher, M.J. (1989) The carbonate environment in bone mineral: A resolution-enhanced Fourier transform infrared study. Calcified Tissue International, 45, 157–164.Google Scholar

  • Rey, C., Renugopalakrishnan, V., Shimizu, M., Collins, B., and Glimcher, M.J. (1991) A resolution-enhanced Fourier transform infrared spectroscopic study of the environment of the CO32– ion in the mineral phase of enamel during its formation and maturation. Calcified Tissue International, 49, 259–268.Google Scholar

  • Rey, C., Combes, C., Drouet, C., and Glimcher, M.J. (2009) Bone mineral: Update on chemical composition and structure. Osteoporosis International, 20, 1013–1021.Google Scholar

  • Shimoda, S., Aoba, T., Moreno, E.C., and Miake, Y. (1990) Effect of solution composition on morphological and structural features of carbonated calcium apatites. Journal of Dental Research, 69, 1731–1740.Google Scholar

  • Suetsugu, Y., Shimoya, I., and Tanaka, J. (1998) Configuration of carbonate ions in apatite structure determined by polarized infrared spectroscopy. Journal of the American Ceramic Society, 81, 746–748.Google Scholar

  • Tacker, R.C. (2008) Carbonate in igneous and metamorphic fluorapatite: Two type A and two type B substitutions. American Mineralogist, 93, 168–176.Google Scholar

  • Tyliszcak, T. (1992) BGAUSS Data Analysis Program. McMaster University.Google Scholar

  • Verbeeck, R.M.H., De Maeyer, E.A.P., and Driessens, F.C.M. (1995) Stoichiometry of potassium- and carbonate-containing apatites synthesized by solid state reactions. Inorganic Chemistry, 34, 2084–2088.Google Scholar

  • Verdelis, K., Lukashova, L., Wright, J.T., Mendelsohn, R., Peterson, M.G.E., Doty, S., and Boskey, A.L. (2007) Maturational changes in dentin mineral properties. Bone, 40, 1399–1407.Google Scholar

  • Vignoles, C. (1973) Contribution à l’étude de l’influence des ions alcalins sur la carbonatation dans les sites de type B des apatites phosphor-calciques, thèse, L’université de Paul Sabatier, Toulouse, France.Google Scholar

  • Wilson, R.M., Elliott, J.C., Dowker, S.E.P., and Smith, R.I. (2004) Rietveld structure refinement of precipitated carbonate apatite using neutron diffraction data. Biomaterials, 25, 2205–2213.Google Scholar

  • Yi, H., Balan, E., Gervais, C., Ségalen, L., Blanchard, M., and Lazzeri, M. (2014) Theoretical study of the local charge compensation and spectroscopic properties of B-type carbonate defects in apatite. Physics and Chemistry of Minerals, 41, 347–359.Google Scholar

About the article

Received: 2016-02-01

Accepted: 2016-08-25

Published Online: 2017-01-03

Published in Print: 2017-01-01

Citation Information: American Mineralogist, Volume 102, Issue 1, Pages 149–157, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5704.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in