Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 102, Issue 1

Issues

An experimental kinetic study on the structural evolution of natural carbonaceous material to graphite

Yoshihiro Nakamura
  • Corresponding author
  • Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Takashi Yoshino / Madhusoodhan Satish-Kumar
  • Department of Geology, Faculty of Science, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-03 | DOI: https://doi.org/10.2138/am-2017-5733

Abstract

We report here new experimental kinetic data on the structural evolution of carbonaceous material (CM) to graphite during heating at various temperatures (1000 to 1450 °C) for various durations (10 min to 115 h) under a pressure of 1 GPa. Natural CMs extracted from sedimentary rocks in the Shimanto accretionary complex and the Hidaka metamorphic belt of Japan transformed in morphology and crystallinity with increasing temperature and annealing duration to become fully ordered graphite (d002 spacing ~3.36 Å). Transmission electron microscopy showed that both samples have undergone microstructural evolution from amorphous carbon to platy graphitic carbon. These changes match the evolution of the samples’ X-ray diffraction (XRD) patterns and micro-Raman spectra. The time–temperature relations of crystal parameters obtained by XRD and micro-Raman spectroscopy demonstrated a sigmoidal transformation curve from an amorphous to a graphitic structure, suggesting complexity of these successive and/or parallel chemical reactions are responsible for graphitization. To assess these complex chemical processes, we adopted three different approaches for formulating the graphitization kinetics using a power rate model, a Johnson-Mehl-Avrami (JMA) model and a superposition method. Irrespective of the models employed, the effective activation energies were estimated to lie between 259 and 339 kJ/mol, which are much lower than those reported previously for graphitization. Summarizing the previous studies and our results between 0.1 and 1000 MPa, we found that the effective activation energies systematically decrease as a function of pressure. Based on the experimental results in this study, the sigmoid functions obtained from the time–temperature relations can be extrapolated to low-temperature conditions at 1 GPa. Our kinetic model using unit-cell height c predicts that CM undergoing metamorphism for about 1 m.y. will begin to crystallize at ~410 °C, and will transform to fully ordered graphite at over ~520 °C. Thus, natural graphitization undergoes a much faster transformation than reported in previous studies at 1 atm and could be explored in laboratory experiments using natural precursor materials under pressure conditions and time spans that reflect natural conditions in the Earth’s crust.

Keywords: Graphitization; carbonaceous material; kinetic model; HPHT experiment

References

  • Aoki, K., Maruyama, S., Isozaki, Y., Otoh, S., and Yanai, S. (2011) Recognition of the Shimanto HP metamorphic belt within the traditional Sanbagawa HP metamorphic belt: New perspectives of the Cretaceous–Paleogene tectonics in Japan. Journal of Asian Earth Sciences, 42, 355–369, .CrossrefGoogle Scholar

  • Aoya, M., Kouketsu, Y., Endo, S., Shimizu, H., Mizukami, T., Nakamura, D., and Wallis, S. (2010) Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks. Journal of Metamorphic Geology, 28, 895–914. http://doi.wiley.com/10.im/j.1525–1314.2010.00896.x

  • Beyssac, O., Goffé, B., Chopin, C., and Rouzaud, J.N. (2002) Raman spectra of carbonaceous material in metasediments: a new geothermometer. Journal of Metamorphic Geology, 20, 859–871. http://doi.wiley.com/10.1046/j.1525-1314.2002.00408.x.Crossref

  • Beyssac, O., Brunet, F., Petitet, J.-P., Goffé, B., and Rouzaud, J.-N. (2003) Experimental study of the microtextural and structural transformations of carbonaceous materials under pressure and temperature. European Journal of Mineralogy, 15, 937–951. http://dx.doi.org/10.1127/0935–1221/2003/0015–0937.Crossref

  • Burnham, A.K., and Sweeney, J.J. (1989) A chemical kinetic model of vitrinite maturation and reflectance. Geochimica et Cosmochimica Acta, 53, 2649–2657, .CrossrefGoogle Scholar

  • Buseck, P.R., and Beyssac, O. (2014) From organic matter to graphite: Graphitization. Elements, 10, 421–426, .CrossrefGoogle Scholar

  • Buseck, P.R., and Huang, B.-J. (1985) Conversion of carbonaceous material to graphite during metamorphism. Geochimica et Cosmochimica Acta, 49, 2003–2016, .CrossrefGoogle Scholar

  • Bustin, R.M., Rouzaud, J.-N., and Ross, J.V. (1995) Natural graphitization of anthracite: Experimental considerations. Carbon, 33, 679–691, .CrossrefGoogle Scholar

  • Charon, E., Rouzaud, J.-N., and Aléon, J. (2014) Graphitization at low temperatures (600–1200 °C) in the presence of iron implications in planetology. Carbon, 66, 178–190, .CrossrefGoogle Scholar

  • Cody, G.D., Alexander, C.M.O.D., Yabuta, H., Kilcoyne, a L.D., Araki, T., Ade, H., Dera, P.K., Fogel, M.L., Militzer, B., and Mysen, B.O. (2008) Organic thermometry for chondritic parent bodies. Earth and Planetary Science Letters, 272, 446–455, .CrossrefGoogle Scholar

  • Cuesta, A., Dhamelincourt, P., Laureyns, J., Martínez-Alonso, A., and Tascón, J.M.D. (1994) Raman microprobe studies on carbon materials. Carbon, 32, 1523–1532, .CrossrefGoogle Scholar

  • Dippel, B., and Heintzenberg, J. (1999) Soot characterization in atmospheric particles from different sources by NIR FT Raman spectroscopy. Journal of Aerosol Science, 30, S907–S908. .CrossrefGoogle Scholar

  • Durand, B., and Nicaise, G., (1980) Procedures of kerogen isolation. In B. Durand, Ed., Kerogen, Insoluble Organic Matter from Sedimentary Rocks. 35–53 p. Editions Techiq, Paris.Google Scholar

  • Feng, B., Bhatia, S.K., and Barry, J.C. (2002) Structural ordering of coal char during heat treatment and its impact on reactivity. Carbon, 40, 481M-96. .CrossrefGoogle Scholar

  • Fischbach, D.B. (1963) Kinetics of graphitization of a petroleum coke. Nature, 200, 1281–1283, .CrossrefGoogle Scholar

  • ———(1971) The kinetics and mechanism of graphitization. In P.L. Walker, Ed., Chemistry and Physics of Carbon, 7, p. 1–154. Marcel Dekker, New York.Google Scholar

  • Fujimoto, H. (2003) Theoretical X-ray scattering intensity of carbons with turbostratic stacking and AB stacking structures. Carbon, 41, 1585–1592, .CrossrefGoogle Scholar

  • Grew, E.G. (1974) Carbonaceous material in some metamorphic rocks of New England and other areas. The Journal of Geology, 82, 50–73. http://www.jstor.org/stable/30068626.

  • Hanfland, M., Beister, H., and Syassen, K. (1989) Graphite under pressure: Equation of state and first-order Raman modes. Physical Review B, 39, 12598–12603. http://dx.doi.org/10.1103/PhysRevB.39.12598.CrossrefGoogle Scholar

  • Hilchie, L.J., and Jamieson, R.A. (2014) Graphite thermometry in a low-pressure contact aureole, Halifax, Nova Scotia. Lithos, 208–209, 21–33, .CrossrefGoogle Scholar

  • Hood, A., Gutjahr, C.C.M., and Heacock, R.L. (1975) Organic metamorphism and the generation of petroleum. AAPG Bulletin, 59, 986–996.Google Scholar

  • Huang, W.-L. (1996) Experimental study of vitrinite maturation: effects of temperature, time, pressure, water, and hydrogen index. Organic Geochemistry, 24, 233–241, .CrossrefGoogle Scholar

  • Inagaki, M. (1996) Carbon materials structure, texture and intercalation. Solid State Ionics, 86–88, 833–839, .CrossrefGoogle Scholar

  • Inagaki, M., and Meyer, R.A. (1999) Stress graphitization. In P.A. Thrower and L.R. Radovic, Eds., Chemistry and Physics of Carbon, 26, p. 149–244. Marcel Dekker, New York.Google Scholar

  • Inagaki, M., Murase, Y., and Noda, T. (1968) Effect of pre-heat-treatment on kinetics of graphitization. Journal of the Ceramic Association, Japan, 76, 184–189. http://doi.org/10.2109/jcersj1950.76.874_184 (in Japanese with English abstract).Crossref

  • Itaya, T. (1981) Carbonaceous material in pelitic schists of the Sanbagawa metamorphic belt in central Shikoku, Japan. Lithos, 14, 215–224, .CrossrefGoogle Scholar

  • ———(1985) Rapid separation technique of carbonaceous materials from a lot of metasedimentary rocks. Bulletin of the Hiruzen Research Institute, Okayama University of Science 11, 47–57 (in Japanese with English abstract).Google Scholar

  • Iwashita, N., Park, C.R., Fujimoto, H., Shiraishi, M., and Inagaki, M. (2004) Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon, 42, 701–714, .CrossrefGoogle Scholar

  • Kanter, M.A. (1957) Diffusion of carbon atoms in natural graphite crystals. Physical Review, 107, 655–663. http://dx.doi.oig/10.1103/PhysRev.107.655.Crossref

  • Kaxiras, E., and Pandey, K. (1988) Energetics of defects and diffusion mechanisms in graphite. Physical Review Letters, 61, 2693–2696. http://dx.doi.org/10.1103/PhysRevLett.61.2693.Crossref

  • Kebukawa, Y., Nakashima, S., and Zolensky, M.E. (2010) Kinetics of organic matter degradation in the Murchison meteorite for the evaluation of parent-body temperature history. Meteoritics and Planetary Science, 45, 101–115. http://doi.wiley. com/10.1111/j.1945-5100.2009.01008.x.Crossref

  • Khawam, A., and Flanagan, D.R. (2006) Solid-state kinetic models: Basics and mathematical fundamentals. The Journal of Physical Chemistry B, 110, 17315–17328, .CrossrefGoogle Scholar

  • Kouketsu, Y., Mizukami, T., Mori, H., Endo, S., Aoya, M., Hara, H., Nakamura, D., and Wallis, S. (2014) A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width. Island Arc, 23, 33–50. http://doi.wiley.com/10.1111/iar.12057.Crossref

  • Larsen, J.W., Pan, C.S., and Shawver, S. (1989) Effect of demineralization on the macromolecular structure of coals. Energy & Fuels, 3, 557–561, .CrossrefGoogle Scholar

  • Luque, F.J., Pasteris, J.D., Wopenka, B., Rodas, M., and Barrenechea, J.F. (1998) Natural fluid deposited graphite: Mineralogical characteristics and mechanism of formation. American Journal of Science, 298, 471–498.Google Scholar

  • Lynch, R.W., and Drickamer, H.G. (1966) Effect of high pressure on the lattice parameter of diamond, graphite, and hexagonal boron nitride. The Journal of Chemical Physics, 44, 181–184.Google Scholar

  • Marsh, H., Crawford, D., and Taylor, D.W. (1983) Catalytic graphitization by iron of isotropic carbon from polyfurfuryl alcohol, 725–1090 K. A high resolution electron microscope study. Carbon, 21, 81–87, .CrossrefGoogle Scholar

  • Marsh, H., Martínez-Escandell, M., and Rodríguez-Reinoso, F. (1999) Semicokes from pitch pyrolysis: mechanisms and kinetics. Carbon, 37, 363–390, .CrossrefGoogle Scholar

  • Muirhead, D.K., Parnell, J., Taylor, C., and Bowden, S.A. (2012) A kinetic model for the thermal evolution of sedimentary and meteoritic organic carbon using Raman spectroscopy. Journal of Analytical and Applied Pyrolysis, 96, 153–161, .CrossrefGoogle Scholar

  • Murty, H.N., Biederman, D.L., Heintz, E.A. (1969) Kinetics of Graphitization–I. Activation energies. Carbon, 7, 667–681. http://dx.doi.org/10.1016/0008-6223(69)90522-3.Crossref

  • Nakamura, Y., and Akai, J. (2013) Microstructural evolution of carbonaceous material during graphitization in the Gyoja-yama contact aureole: HRTEM, XRD and Raman spectroscopic study. Journal of Mineralogical and Petrological Sciences, 108, 131–143. http://doi.org/10.2465/jmps.120625.Crossref

  • Nakamura, Y., Oohashi, K., Toyoshima, T., Satish-Kumar, M., and Akai, J. (2015) Strain-induced amorphization of graphite in fault zones of the Hidaka metamorphic belt, Hokkaido, Japan. Journal of Structural Geology, 72, 142–161, .CrossrefGoogle Scholar

  • Noda, T., Inagaki, M., and Sekiya, T. (1965) Kinetic studdies of the graphitization process–I Effect of ambient gas phase on the rate of graphitization. Carbon, 3, 175–180, .CrossrefGoogle Scholar

  • Noda, T., Kamiya, K., and Inagaki, M. (1968) Effect of pressure on graphitization of carbon. I. Heat treatment of soft carbon under 1, 3 and 5 kbar. Bulletin of the Chemical Society of Japan, 41, 485–492. http://doi.org/10.1246/bcsj.41.485.Crossref

  • Oberlin, A. (1984) Carbonization and graphitization. Carbon, 22, 521–541, .CrossrefGoogle Scholar

  • Oberlin, A., Bonnamy, S., and Rouxhet, P.G. (1999) Colloidal and supermolecular aspect of carbon. In P.A. Thrower and L.R. Radovic, Eds., Chemistry and Physics of Carbon, 26, 1–148 p. Marcel Dekker, New York.Google Scholar

  • Oberlin, A., Bonnamy, S., and Oshida, K. (2006) Landmarks for graphitization. TANSO, 2006, 281–298. http://doi.org/10.7209/tanso.2006.281.Crossref

  • Ohmori, K., Taira, A., Tokuyama, H., Sakaguchi, A., Okamura, M., and Aihara, A. (1997) Paleothermal structure of the Shimanto accretionary prism, Shikoku, Japan: Role of an out-of-sequence thrust. Geology, 25, 327–330, .CrossrefGoogle Scholar

  • Rodrigues, S., Suárez-Ruiz, I., Marques, M., Camean, I., and Flores, D. (2011) Microstructural evolution of high temperature treated anthracites of different rank. International Journal of Coal Geology, 87, 204–211, .CrossrefGoogle Scholar

  • Ross, J.V., and Bustin, R. (1990) The role of strain energy in creep graphitization of anthracite. Nature, 343, 58–60, .CrossrefGoogle Scholar

  • Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., and Pöschl, U. (2005) Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 43, 1731–1742, .CrossrefGoogle Scholar

  • Schwab, V, Spangenberg, J.E., and Grimalt, J.O. (2005) Chemical and carbon isotopic evolution of hydrocarbons during prograde metamorphism from 100°C to 550°C: Case study in the Liassic black shale formation of Central Swiss Alps. Geochimica et Cosmochimica Acta, 69, 1825–1840, .CrossrefGoogle Scholar

  • Sheng, C. (2007) Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity. Fuel, 86, 2316–2324, .CrossrefGoogle Scholar

  • Sheppard, R.E., Polissar, P.J., and Savage, H.M. (2015) Organic thermal maturity as a proxy for frictional fault heating: Experimental constraints on methylphenanthrene kinetics at earthquake timescales. Geochimica et Cosmochimica Acta, 151, 103–116, .CrossrefGoogle Scholar

  • Sung, J. (2000) Graphite → diamond transition under high pressure: A kinetics approach. Journal of Materials Science, 35, 6041–6054, .CrossrefGoogle Scholar

  • Sweeney, J., and Burnham, A.K. (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74, 1559–1570.Google Scholar

  • Tuinstra, F., and Koenig, L. (1970) Raman spectrum of graphite. The Journal of Chemical Physics, 53, 1126–1130. http://dx.doi.org/10.1063/1.1674108.Crossref

  • Vandenbroucke, M., and Largeau, C. (2007) Kerogen origin, evolution and structure. Organic Geochemistry, 38, 719–833, .CrossrefGoogle Scholar

  • Wada, H., Tomita, T., Matsuura, K., Iuchi, K., Ito, M., and Morikiyo, T. (1994) Graphitization of carbonaceous matter during metamorphism with references to carbonate and pelitic rocks of contact and regional metamorphisms, Japan. Contributions to Mineralogy and Petrology, 118, 217–228, .CrossrefGoogle Scholar

  • Wang, G.-F. (1989) Carbonaceous material in the Ryoke metamorphic rocks, Kinki district, Japan. Lithos, 22, 305–316, .CrossrefGoogle Scholar

  • Wopenka, B., and Pasteris, J.D. (1993) Structural characterization of kerogens to granulite-facies graphite: Applicability of Raman microprobe spectroscopy. American Mineralogist, 78, 533–557.Google Scholar

  • Zhao, J., Yang, L., Li, F., Yu, R., and Jin, C. (2009) Structural evolution in the graphitization process of activated carbon by high-pressure sintering. Carbon, 47, 744–751, .CrossrefGoogle Scholar

  • Zhou, Q., Xiao, X., Pan, L., and Tian, H. (2014) The relationship between micro-Raman spectral parameters and reflectance of solid bitumen. International Journal of Coal Geology, 121, 19–25, .CrossrefGoogle Scholar

About the article

Received: 2016-02-24

Accepted: 2016-07-25

Published Online: 2017-01-03

Published in Print: 2017-01-01


Citation Information: American Mineralogist, Volume 102, Issue 1, Pages 135–148, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5733.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in