Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 102, Issue 1


Formation of the ferruginous smectite SWa-1 by alteration of soil clays

Leslie L. Baker
  • Department of Geological Sciences, and Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, Idaho 83844-3022, U.S.A
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-03 | DOI: https://doi.org/10.2138/am-2017-5735


Clay minerals found in and near the surface of Mars contain unique information about the geo-chemical environment in the martian near-surface in the ancient past. To interpret this information, it is necessary to fully understand the environments in which different clay minerals form. Studies of terrestrial analog materials and environments are a useful way to address such questions, and some terrestrial materials are also important standards for remote sensing and in situ chemical and mineralogical analyses. This study presents new information on the formation environment of an unusual standard clay, the Clay Minerals Society source clay SWa-1 ferruginous smectite of Grant County. The SWa-1 collection locality is in the Columbia River Basalts (CRB), at the contact between a paleosol and a capping basalt flow. Features at the contact indicate the paleosol soil was wet when the capping flow was emplaced, that lava-sediment mixing occurred, and that both the soil and the capping lava were hydrothermally altered. The soil was hydrothermally enriched in Fe, Mn, and Si. The SWa-1 sample was collected from within the altered zone, suggesting it formed through alteration of paleosol clays by addition of Fe. Similar environments are widespread in the CRB, particularly at the plateau margins, suggesting that altered clays may occur frequently at lava-sediment contacts. Such environments are likely to occur wherever basalt flows are emplaced under warm, wet conditions promoting weathering—such as Mars >3.5 Ga before the present, when clay minerals were forming at its surface. This information has important implications for the use of clay compositions to inform clay formation environments on Mars.

Keywords: Nontronite; Mars; clay minerals; Columbia River Basalts; SWa-1

Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.

References cited

  • Abad, I., Jiménez-Millán, J., Molina, J.M., Nieto, F., and Vera, J.A. (2003) Anomalous reverse zoning of saponite and corrensite caused by contact metamorphism and hydrothermal alteration of marly rocks associated with subvolcanic bodies. Clays and Clay Minerals, 51, 5, 543–554.Google Scholar

  • Allen, V.T., and Scheid, V.E. (1946) Nontronite in the Columbia River region. American Mineralogist, 31, 294–312.Google Scholar

  • April, R.H. (1980) Regularly interstratified chlorite/vermiculite in contact metamorphosed red beds, Newark Group, Connecticut Valley. Clays and Clay Minerals, 28, 1, 1–11.Google Scholar

  • Baker, L.L., and Strawn, D.G. (2014) Temperature effects on synthetic nontronite crystallinity and implications for nontronite formation in Columbia River Basalts. Clays and Clay Minerals, 62, 2, 89–101.Google Scholar

  • Barry, T., Kelley, S., Reidel, S., Camp, V., Self, S., Jarboe, N., Duncan, R., and Renne, P. (2013) Eruption chronology of the Columbia River Basalt Group. Geological Society of America Special Papers, 497, 45–66.Google Scholar

  • Bhattacharyya, D.P. (1983) Origin of berthierine in ironstones. Clays and Clay Minerals, 31, 3, 173–182.Google Scholar

  • Bibring, J.-P., Langevin, Y., Gendrin, A., Gondet, B., Poulet, F., Berthé, M., Soufflot, A., Arvidson, R., Mangold, N., Mustard, J., Drossart, P., and the Omega team (2005) Mars surface diversity as revealed by the OMEGA/Mars express observations. Science, 307, 1576–1581.Google Scholar

  • Bibring, J.-P., Langevin, Y., Mustard, J.F., Poulet, F., Arvidson, R., Gendrin, A., Gondet, B., Mangold, N., Pinet, P., Forget, F., and the Omega team (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science, 312, 400–404.Google Scholar

  • Bishop, J.L., Dobrea, E.Z.N., McKeown, N.K., Mario Parente, Ehlmann, B.L., Michalski, J.R., Milliken, R.E., Poulet, F., Swayze, G.A., Mustard, J.F., Murchie, S.L., and Bibring, J.-P. (2008) Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science, 321, 830–833.Google Scholar

  • Bridges, J., and Grady, M. (2000) Evaporite mineral assemblages in the nakhlite (martian) meteorites. Earth and Planetary Science Letters, 176, 3, 267–279.Google Scholar

  • Bridges, J.C., Catling, D., Saxton, J., Swindle, T., Lyon, I., and Grady, M. (2001) Alteration assemblages in martian meteorites: implications for near-surface processes. Space Science Reviews, 96, 1, 365–392.Google Scholar

  • Bristow, T.F., and Milliken, R.E. (2011) Terrestrial perspective on authigenic clay mineral production in ancient martian lakes, Clays and Clay Minerals, 59, 4, 339–358.Google Scholar

  • Carter, J., Loizeau, D., Mangold, N., Poulet, F., and Bibring, J.-P. (2015) Widespread surface weathering on early Mars: A case for a warmer and wetter climate. Icarus, 248, 373–382.Google Scholar

  • Chipera, S.J., and Bish, D.L. (2001) Baseline studies of the Clay Minerals Society Source Clays: Powder X-ray diffraction analyses. Clays and Clay Minerals, 49, 5, 398–409.Google Scholar

  • Drever, J.I. (1973) The preparation of oriented clay mineral specimens for X-ray diffraction analysis by a filter-membrane peel technique. American Mineralogist, 58, 553–554.Google Scholar

  • Ebinghaus, A., Hartley, A.J., Jolley, D.W., Hole, M., and Millett, J. (2014) Lavasediment interaction and drainage-system development in a large igneous province: Columbia River Flood Basalt Province, Washington State, USA. Journal of Sedimentary Research, 84, 11, 1041–1063.Google Scholar

  • Ehlmann, B.L., Mustard, J.F., Fassett, C.I., Schon, S.C., Head, J.W. III, Des Marais, D.J., Grant, J.A., and Murchie, S.L. (2008) Clay minerals in delta deposits and organic preservation potential on Mars. Nature Geoscience, 1, 6, 355–358.Google Scholar

  • Ehlmann, B.L., Mustard, J.F., Clark, R.N., Swayze, G.A., and Murchie, S.L. (2011a) Evidence for low-grade metamorphism, hydrothermal alteration, and diagenesis on Mars from phyllosilicate mineral assemblages. Clays and Clay Minerals, 59, 4, 359–377.Google Scholar

  • Ehlmann, B.L., Mustard, J.F., Murchie, S.L., Bibring, J.-P., Meunier, A., Fraeman, A.A., and Langevin, Y. (2011b) Subsurface water and clay mineral formation during the early history of Mars. Nature, 479, 7371, 53–60.Google Scholar

  • Ehlmann, B.L., Bish, D.L., Ruff, S.W., and Mustard, J.F. (2012) Mineralogy and chemistry of altered Icelandic basalts: Application to clay mineral detection and understanding aqueous environments on Mars. Journal of Geophysical Research: Planets, 117, E11, doi:10.1029/2012JE004156.Google Scholar

  • Ehlmann, B.L., Berger, G., Mangold, N., Michalski, J.R., Catling, D., Ruff, S.W., Chassefière, E., Niles, P.B., Chevrier, V., and Poulet, F. (2013) Geochemical consequences of widespread clay mineral formation in Mars’ ancient crust. Space Science Reviews, 174, 1-4, 329–364.Google Scholar

  • Gates, W. (2005) Infrared spectroscopy and the chemistry of dioctahedral smectites. CMS Workshop Lectures, Clay Minerals Society.Google Scholar

  • ——(2008) Cation mass-valence sum (CM-VS) approach to assigning OH-bending bands in dioctahedral smectites. Clays and Clay Minerals, 56, 1, 10–22.Google Scholar

  • Gates, W.P., Slade, P.G., Manceau, A., and Lanson, B. (2002) Site occupancies by iron in nontronites. Clays and Clay Minerals, 50, 2, 223–239.Google Scholar

  • Gooding, J.L., Wentworth, S.J., and Zolensky, M.E. (1991) Aqueous alteration of the Nakhla meteorite. Meteoritics, 26, 2, 135–143.Google Scholar

  • Greenberger, R.N., Mustard, J.F., Kumar, P.S., Dyar, M.D., Breves, E.A., and Sklute, E.C. (2012) Low temperature aqueous alteration of basalt: Mineral assemblages of Deccan basalts and implications for Mars. Journal of Geophysical Research: Planets 117, E11, doi:10.1029/2012JE004127.CrossrefGoogle Scholar

  • Greenberger, R.N., Mustard, J.F., Cloutis, E.A., Mann, P., Wilson, J.H., Flemming, R.L., Robertson, K.M., Salvatore, M.R., and Edwards, C.S. (2015) Hydrothermal alteration and diagenesis of terrestrial lacustrine pillow basalts: Coordination of hyperspectral imaging with laboratory measurements. Geochimica et Cosmochimica Acta, 171, 174–200.Google Scholar

  • Harris, W., and White, G.N. (2008) X-ray diffraction techniques for soil mineral identification, In A.L. Ulery and L.R. Drees, Eds., Methods of Soil Analysis, Part 5, Mineralogical Methods, p. 81-115. Soil Science Society of America, Madison, Wisconsin.Google Scholar

  • Herdianita, N.R., Browne, P.R.L., Rodgers, K.A., and Campbell, K.A. (2000) Mineralogical and textural changes accompanying ageing of silica sinter. Mineralium Deposita, 35, 1, 48–62.Google Scholar

  • Hill, I.G., Worden, R.H., and Meighan, I.G. (2000) Yttrium: The immobility-mobility transition during basaltic weathering. Geology, 28, 10, 923–926.Google Scholar

  • Hobbs, K.M., and Parrish, J.T. (2016) Miocene global change recorded in Colum-bia River basalt-hosted paleosols. Geological Society of America Bulletin.Google Scholar

  • Hooper, P.R. (1982) The Columbia River Basalts. Science, 215, 4539, 1463–1468.Google Scholar

  • Hosterman, J.W. (1960) Geology of the clay deposits in parts of Washington and Idaho. Clays and Clay Minerals, 7, 285–292.Google Scholar

  • Inoue, A., and Utada, M. (1991) Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, northern Honshu, Japan. American Mineralogist 76, 3-4, 628–640.Google Scholar

  • Keeling, J.L., Raven, M.D., and Gates, W.P. (2000) Geology and characterization of two hydrothermal nontronites from weathered metamorphic rocks at the Uley graphite mine, South Australia. Clays and Clay Minerals, 48, 5, 537–548.Google Scholar

  • Kerr, P.F., and Kulp, J.L. (1949) Reference clay localities, United States. In P.F. Kerr and J.L. Kulp, Eds., Reference Clay Minerals; American Petroleum Institute Research Project 49. Preliminary reports no. 1-8. p. 69-73. Columbia University, New York.Google Scholar

  • Lackschewitz, K.S., Singer, A., Botz, R., Garbe-Schönberg, D., Stoffers, P., and Horz, K. (2000) Formation and Transformation of Clay Minerals in the Hy-drothermal Deposits of Middle Valley, Juan de Fuca Ridge, ODP Leg 169. Economic Geology, 95, 2, 361–389.Google Scholar

  • Lanson, B., Lantenois, S., van Aken, P.A., Bauer, A., and Plançon, A. (2012) Experimental investigation of smectite interaction with metal iron at 80 °C: Structural characterization of newly formed Fe-rich phyllosilicates. American Mineralogist 97, 5-6, 864–871.Google Scholar

  • Loizeau, D., Mangold, N., Poulet, F., Bibring, J.P., Gendrin, A., Ansan, V., Gomez, C., Gondet, B., Langevin, Y., Masson, P., and Neukum, G. (2007) Phyllosilicates in the Mawrth Vallis region of Mars. Journal of Geophysical Research 112, E8, E08S08.Google Scholar

  • Madsen, F.A., Rose, M.C., and Cee, R. (1995) Review of quartz analytical methodologies: Present and future needs. Applied Occupational and Environmental Hygiene, 10, 12, 991–1002.Google Scholar

  • Martin, B.S., Tolan, T.L., and Reidel, S.P. (2013) Revisions to the stratigraphy and distribution of the Frenchman Springs Member, Wanapum Basalt. Geological Society of America Special Papers, 497, 155–179.Google Scholar

  • Maynard, J. (1992) Chemistry of modern soils as a guide to interpreting Precambrian paleosols. The Journal of Geology, 279–289.Google Scholar

  • McKenzie, D., and Nimmo, F. (1999) The generation of martian floods by the melting of ground ice above dykes. Nature, 397, 6716, 231–233.Google Scholar

  • McKeown, N.K., Bishop, J.L., Noe Dobrea, E.Z., Ehlmann, B.L., Parente, M., Mustard, J.F., Murchie, S.L., Swayze, G.A., Bibring, J.-P., and Silver, E.A. (2009) Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate. Journal of Geophysical Research: Planets 114, E00D10.Google Scholar

  • Michalski, J.R., and Noe Dobrea, E.Z. (2007) Evidence for a sedimentary origin of clay minerals in the Mawrth Vallis region. Mars, Geology, 35, 10, 951–954.Google Scholar

  • Michalski, J.R., Kraft, M.D., Sharp, T.G., and Christensen, P.R. (2006) Effects of chemical weathering on infrared spectra of Columbia River Basalt and spectral interpretations of martian alteration. Earth and Planetary Science Letters, 248, 3, 822–829.Google Scholar

  • Milliken, R.E., and Bish, D.L. (2010) Sources and sinks of clay minerals on Mars. Philosophical Magazine 90, 17-18, 2293–2308.Google Scholar

  • Murchie, S.L., Mustard, J.F., Ehlmann, B.L., Milliken, R.E., Bishop, J.L., McKeown, N.K., Noe Dobrea, E.Z., Seelos, F.P., Buczkowski, D.L., Wiseman, S.M., and others. (2009) A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 114, E00D06.Google Scholar

  • Mustard, J.F., Murchie, S.L., Pelkey, S.M., Ehlmann, B.L., Milliken, R.E., Grant, J.A., Bibring, J.P., Poulet, F., Bishop, J., Dobrea, E.N., and others. (2008) Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature, 454, 7202, 305–309.Google Scholar

  • Nesbitt, H., and Young, G. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 5885, 715–717.Google Scholar

  • Neumann, A., Petit, S., and Hofstetter, T.B. (2011) Evaluation of redox-active iron sites in smectites using middle and near infrared spectroscopy. Geochimica et Cosmochimica Acta, 75, 9, 2336–2355.Google Scholar

  • Neumann, A., Olson, T.L., and Scherer, M.M. (2013) Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at clay mineral edge and basal sites. Environmental Science & Technology, 47, 13, 6969–6977.Google Scholar

  • Nield, D.A., and Bejan, A. (2006) Convection in Porous Media, 778 p. Springer Science & Business Media.Google Scholar

  • Noe Dobrea, E.Z., Bishop, J.L., McKeown, N.K., Fu, R., Rossi, C.M., Michalski, J.R., Heinlein, C., Hanus, V., Poulet, F., Mustard, R.J.F., and others. (2010) Mineralogy and stratigraphy of phyllosilicate-bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: Constraints on geological origin. Journal of Geophysical Research: Planets 115, E00D19.Google Scholar

  • Poulet, F., Bibring, J.P., Mustard, J.F., Gendrin, A., Mangold, N., Langevin, Y., Arvidson, R.E., Gondet, B., and Gomez, C. (2005) Phyllosilicates on Mars and implications for early martian climate. Nature, 438, 7068, 623–627.Google Scholar

  • Reidel, S.P., and Tolan, T.L. (2013) The late Cenozoic evolution of the Columbia River system in the Columbia River flood basalt province. Geological Society of America Special Papers, 497, 201–230.Google Scholar

  • Ross, C.S., and Hendricks, S.B. (1945) Minerals of the montmorillonite group, their origin and relation to soils and clays. U.S. Geological Survey Professional Paper 205-B.Google Scholar

  • Russell, J.D., and Fraser, A.R. (1994) Infrared Methods, In M.J. Wilson, Ed., Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, p. 11-67. Chapman & Hall, London.Google Scholar

  • Sheldon, N.D. (2003) Pedogenesis and geochemical alteration of the Picture Gorge subgroup, Columbia River basalt, Oregon. Geological Society of America Bulletin 115, 11, 1377–1387.Google Scholar

  • ——(2006) Using paleosols of the Picture Gorge Basalt to reconstruct the middle Miocene climatic optimum. PaleoBios, 26, 2, 27–36.Google Scholar

  • Smiley, C., and Rember, W. (1985) Composition of the Miocene Clarkia flora. Late Cenozoic History of the Pacific Northwest, 95, 112.Google Scholar

  • Smith, G.A. (1988a) Sedimentology of proximal to distal volcaniclastics dispersed across an active foldbelt: Ellensburg Formation (late Miocene), central Washington. Sedimentology, 35, 6, 953–977.Google Scholar

  • ——(1988b) Neogene synvolcanic and syntectonic sedimentation in central Washington. Geological Society of America Bulletin 100, 9, 1479–1492.Google Scholar

  • Smith, G.A., Bjornstad, B.N., and Fecht, K.R. (1989) Neogene terrestrial sedimentation on and adjacent to the Columbia Plateau; Washington, Oregon, and Idaho. Geological Society of America Special Papers, 239, 187–198.Google Scholar

  • Squyres, S.W., Wilhelms, D.E., and Moosman, A.C. (1987) Large-scale volcano-ground ice interactions on Mars. Icarus, 70, 3, 385–408.Google Scholar

  • Takeuchi, A., Larson, P.B., and Suzuki, K. (2007) Influence of paleorelief on the Mid-Miocene climate variation in southeastern Washington, northeastern Oregon, and western Idaho, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 254, 3, 462–476.Google Scholar

  • Thomson, B.J., Hurowitz, J.A., Baker, L.L., Bridges, N.T., Lennon, A.M., Paulsen, G., and Zacny, K. (2014) The effects of weathering on the strength and chemistry of Columbia River Basalts and their implications for Mars Exploration Rover Rock Abrasion Tool (RAT) result. Earth and Planetary Science Letters, 400, 130–144.Google Scholar

  • Tolan, T.L., Martin, B.S., Reidel, S.P., Kauffman, J.D., Garwood, D.L., and Anderson, J.L. (2009) Stratigraphy and tectonics of the central and eastern portions of the Columbia River Flood-Basalt Province: An overview of our current state of knowledge. Field Guides, 15, 645–672.Google Scholar

  • Vitali, F., Blanc, G., Larqué, P., Duplay, J., and Morvan, G. (1999) Thermal diagenesis of clay minerals within volcanogenic material from the Tonga convergent margin. Marine Geology 157, 1-2, 105–125.Google Scholar

  • Wilson, J., Savage, D., Cuadros, J., Shibata, M., and Ragnarsdottir, K.V. (2006a) The effect of iron on montmorillonite stability. (I) Background and thermodynamic considerations. Geochimica et Cosmochimica Acta, 70, 2, 306–322.Google Scholar

  • Wilson, J., Cressey, G., Cressey, B., Cuadros, J., Ragnarsdottir, K.V., Savage, D., and Shibata, M. (2006b) The effect of iron on montmorillonite stability. (II) Experimental investigation. Geochimica et Cosmochimica Acta, 70, 2, 323–336.Google Scholar

  • Wray, J.J., Ehlmann, B.L., Squyres, S.W., Mustard, J.F., and Kirk, R.L. (2008) Compositional stratigraphy of clay-bearing layered deposits at Mawrth Vallis, Mars. Geophysical Research Letters, 35, 12, L12202.Google Scholar

  • Wüst, R., Bustin, R.M., and Ross, J. (2008) Neo-mineral formation during artificial coalification of low-ash—mineral free-peat material from tropical Malaysia-potential explanation for low ash coals. International Journal of Coal Geology, 74, 2, 114–122.Google Scholar

  • Yesavage, T., Thompson, A., Hausrath, E.M., and Brantley, S.L. (2015) Basalt weathering in an Arctic Mars-analog site. Icarus, 254, 219–232.Google Scholar

  • Zhang, M., and Moxon, T. (2014) Infrared absorption spectroscopy of SiO2-moganite. American Mineralogist, 99, 4, 671–680.Google Scholar

About the article

Received: 2016-02-25

Accepted: 2016-08-23

Published Online: 2017-01-03

Published in Print: 2017-01-01

Citation Information: American Mineralogist, Volume 102, Issue 1, Pages 33–41, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5735.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in