Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2017: 2.645

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 102, Issue 1

Issues

Apatite trace element and isotope applications to petrogenesis and provenance

Emilie Bruand
  • Corresponding author
  • Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, U.K.
  • School of Earth and Environmental Sciences, Portsmouth University, Burnaby Building, Burnaby Road, Portsmouth PO1 3QL, U.K.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mike Fowler
  • School of Earth and Environmental Sciences, Portsmouth University, Burnaby Building, Burnaby Road, Portsmouth PO1 3QL, U.K.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Craig Storey
  • School of Earth and Environmental Sciences, Portsmouth University, Burnaby Building, Burnaby Road, Portsmouth PO1 3QL, U.K.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ James Darling
  • School of Earth and Environmental Sciences, Portsmouth University, Burnaby Building, Burnaby Road, Portsmouth PO1 3QL, U.K.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-03 | DOI: https://doi.org/10.2138/am-2017-5744

Abstract

Apatite is an excellent tracer of petrogenetic processes as it can incorporate a large range of elements that are sensitive to melt evolution (LREE-MREE, Sr, Pb, Mn, halogens, Nd isotopes). Recent advances in the understanding of trace element concentrations and isotope ratios in apatite provide a novel tool to investigate magmatic petrogenesis and sediment provenance. Recent experimental work has better characterized trace element partition coefficients for apatite, which are sensitive to changes in magma composition (e.g., SiO2 and the aluminum saturation index value). The chemistry of apatites from granitoids has been suggested to reflect the composition of the host magma and yield information about petrogenetic processes that are invisible at the whole-rock scale (mixing, in situ crystal fractionation, metasomatism). Nd isotopes in apatite can now be analyzed by LA-MC-ICP-MS to constrain mantle and crustal contributions to the source(s) of the studied magma. These recent advances highlight exciting new horizons to understand igneous processes using accessory minerals. In this contribution, we use a compilation of recent data to show that apatite in the matrix and as inclusions within zircon and titanite is useful for providing insights into the nature and petrogenesis of the parental magma.Trace element modeling from in situ analyses of apatite and titanite can reliably estimate the original magma composition, using appropriate partition coefficients and careful imaging. This provides a new way to look at magmatic petrogenesis that have been overprinted by metamorphic processes. It also provides the rationale for new investigations of sedimentary provenance using detrital accessory minerals, and could provide a powerful new window into early Earth processes if applied to Archean or Hadean samples.

Keywords: Apatite; petrogenesis; inclusions in accessory minerals; crustal evolution; provenance

Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.

References

  • Belousova, E.A., Walters, S., Griffin, W.L., and O’Reilly, S.Y. (2001) Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Australian. Journal of Earth Sciences, 48, 603–619.Google Scholar

  • Belousova, E.A., Griffin, W.L., O’Reilly, S.Y., and Fisher, N.I. (2002) Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration, 76, 45–69.Google Scholar

  • Bernet, M., and Spiegel, C. (2004) Detrital thermochronology: provenance, analysis, exhumation and landscape evolution of mountain belts. In Bernet, M., and Spiegel, C., Eds, Detrital Thermochronology. Geological Society of America, Boulder, Special Publication, 378, 126.Google Scholar

  • Bindeman, I. (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Reviews in Mineralogy and Geochemistry, 69, 445–478.Google Scholar

  • Bleeker, W. (2003) The late Archean record: a puzzle in ca. 35 pieces. Lithos, 71, 99–134.Google Scholar

  • Bonamici, C., Kozdon, R., Ushikubo, T., and Valley, J.W. (2011) High-resolution P-T-t paths from δ18O zoning in titanite: A snapshot of late-orogenic collapse in the Grenville of New York. Geology, 39, 959–962.Google Scholar

  • Bonamici, C., Kozdon, R., Ushikubo, T., and Valley, J.W. (2014) Intragrain oxygen isotope zoning in titanite by SIMS: Cooling rates and fluid infiltration along the Carthage-Colton Mylonite Zone, Adirondack Mountains, New York, U.S.A. Journal of Metamorphic Geology, 32, 71–92.Google Scholar

  • Bonamici, C., Fanning, C.M., Kozdon, R., Fournelle, J.H., and Valley, J.W. (2015) Combined oxygen-isotope and U-Pb zoning studies of titanite: New criteria for age preservation. Chemical Geology, 398, 70–84.Google Scholar

  • Boyce, J.W., Liu, Y., Rossman, G.R., Guan, Y., Eiler, J.M., Stolper, E.M., and Taylor, L.A. (2010) Lunar apatite with terrestrial volatil abundances. Nature, 466, 466–469.Google Scholar

  • Boyce, J.W., Tomlinson, S.M., McCubbin, F.M., Greenwood, J.P., and Treiman, A.H. (2014) The lunar apatite paradox. Science, 344, 400–402.Google Scholar

  • Bruand, E., Storey, C., and Fowler, M. (2014) Accessory mineral chemistry of high Ba-Sr granites from northern Scotland: Constraints on petrogenesis and records of whole-rock signature. Journal of Petrology, 55, 1619–1651.Google Scholar

  • ——— (2016) Apatite inclusions within zircon and titanite as a window into the early Earth. Geology, 44, 91–94.Google Scholar

  • Chew, D., and Donelick, R. (2012) Combined apatite fission track and U-Pb dating by LA-ICP-MS and its application in apatite provenance analysis. Mineralogical Association of Canada Short Course, 42, 219–247.Google Scholar

  • Chu, M.F., Wang, K.L., Griffin, W.L., Chung, S.L., O’Reilly, S.Y., Pearson, N.J., and Iizuka, Y. (2009) Apatite composition: Tracing petrogenetic processes in transhimalayan granitoids. Journal of Petrology, 50, 1829–1855.Google Scholar

  • Coogan, L.A., and Hinton, R. (2006) Do the trace element compositions of detrital zircons require Hadeaan continental crust? Geology, 34, 633–636.Google Scholar

  • Darling, J., Storey, C., and Hawkesworth, C. (2009) Impact melt sheet zircons and their implications for the Hadean crust. Geology, 37, 927–930, .CrossrefGoogle Scholar

  • Farver, J.R., and Giletti, B.J. (1989) Oxygen and strontium diffusion kinetics in apatite and potential applications to thermal history determinations. Geochimica and Cosmochimica Acta, 53, 1621–1631.Google Scholar

  • Foster, G., and Carter, D. (2007) Insights into the patterns and locations of erosion in the Himalaya–A combined fission-track and in situ Sm-Nd isotopic study of detrital apatite. Earth and Planetary Science Letters, 257, 407–418.Google Scholar

  • Fowler, M., and Rollinson, H. (2012) Phanerozoic sanukitoids from Caledonian Scotland: Implications for Archean subduction. Geology, 40, 1079–1082.Google Scholar

  • Fowler, M.B., Henney, P.J., Darbyshire, D.P.F., and Greenwood, P.B. (2001) Petrogenesis of high Ba-Sr granites: the Rogart pluton, Sutherland. Journal of the Geological Society, 158, 521–534.Google Scholar

  • Fowler, M.B., Kocks, H., Darbyshire, D.P.F., and Greenwood, P.B. (2008) Petrogenesis of high Ba-Sr plutons from the Northern Highlands Terrane of the British Caledonian Province. Lithos, 105, 129–148.Google Scholar

  • Greenwood, J.P., Itoh, S., Sakamoto, N., Warren, P., Taylor, L.A., and Yurimoto, H. (2011) Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nature Geoscience, 4, 79–82.Google Scholar

  • Gregory, C.J., McFarlane, C.R.M., Hermann, J., and Rubatto, D. (2009) Tracing the evolution of calc-alkaline magmas: In-situ Sm-Nd isotope studies of accesory minerals in the Bergell Igneous Complex, Italy. Chemical Geology, 260, 73–86.Google Scholar

  • Harlov, D.E. (2015) Apatite; a fingerprint for metasomatic processes (in Apatite; a mineral for all seasons). Elements Magazine, 11, 171–176.Google Scholar

  • Hopkins, M.D., Harrison, T.M., and Manning, C.E. (2010) Constraints on Hadean geodynamics from mineral inclusions in >4 Ga zircons. Earth and Planetary Science Letters, 298, 367–376.Google Scholar

  • Hoskin, P.W.O., and Schaltegger, U. (2003) The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53, 27–62.Google Scholar

  • Hoskin, P.W.O., Kinny, P.D., Wyborn, D., and Chappell, B.W. (2000) Identifying accessory mineral saturation during differentiation in granitoid magmas: An integrated approach. Journal of Petrology, 41, 1365–1396.Google Scholar

  • Jennings, E.S., Marschall, H.R., Hawkesworth, C.J., and Storey, C.D. (2011) Characterization of magma from inclusions in zircon: Apatite and biotite work well, feldspar less so. Geology, 39, 863–866.Google Scholar

  • Kempe, U., and Götze, J. (2002) Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits. Mineralogical Magazine, 66, 135–156.Google Scholar

  • King, E.M., Valley, J.W., Davis, D.W., and Kowallis, B.J. (2001) Empirical determination of oxygen isotope fractionation factors for titanite with respect to zircon and quartz. Geochimica et Cosmochimica Acta, 65, 3165–3175.Google Scholar

  • Luhr, J.F., Carmichael, I.S.E., and Varekamp, J.C. (1984) The 1982 eruptions of el-chichon volcano, chiapas, mexico–Mineralogy and petrology of the anhydrite-bearing pumices. Journal of Volcanology and Geothermal Research, 23, 69–108.Google Scholar

  • Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., and Champion, D. (2005) An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79, 1–24.Google Scholar

  • Martin, H., Moyen, J.F., and Rapp, R. (2009) The sanukitoid series: Magmatism at the Archean-Proterozoic transition. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100, 15–33, .CrossrefGoogle Scholar

  • McCubbin, F.M., and Jones, R.H. (2015) Extraterrestrial apatite: Planetary geochemistry to astrobiology. Elements Magazine, 11, 183–188, .CrossrefGoogle Scholar

  • McDonough, W.F., and Sun, S.S. (1995) The composition of the Earth. Chemical Geology, 120, 223–253, .CrossrefGoogle Scholar

  • McLeod, G.W., Dempster, T.J., and Faithfull, J.W. (2011) Deciphering magmamixing processes using zoned titanite from the Ross of Mull Granite, Scotland. Journal of Petrology, 52, 55–82.Google Scholar

  • Miles, A.J., Graham, C.M., Hawkesworth, C.J., Gillespie, M.R., and Hinton, R.W. (2013) Evidence for distinct stages of magma history recorded by the compositions of accessory apatite and zircon. Contributions to Mineralogy and Petrology, 166, 1–19.Google Scholar

  • ——— (2014) Mn in apatite: A new redox proxy for silicic magmas? Geochimica et Cosmochimica Acta, 132, 101–119.Google Scholar

  • Morton, A., and Hallsworth, C. (2007) Stability of detrital heavy minerals during burial diagenesis. In Mange, M., and Wright, D.K., Eds., Heavy Minerals in Use: Amsterdam, Elsevier, Developments in Sedimentology, 58, 215–245, .CrossrefGoogle Scholar

  • Morton, A., and Yaxley, G. (2007) Detrital apatite geochemistry and its application in provenance studies. GSA Special Paper, 420, 319–344.Google Scholar

  • Parat, F., Holtz, F., and Streck, M. (2011) Sulfur-bearing magmatic accessory minerals. Reviews in Mineralogy and Geochemistry, 73, 285–314.Google Scholar

  • Piccoli, P.M., and Candela, P.A. (2002) Apatite in igneous systems. Reviews in Mineralogy and Geochemistry, 48, 255–292.Google Scholar

  • Prowatke, S., and Klemme, S. (2005) Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochimica et Cosmochimica Acta, 69, 695–709.Google Scholar

  • ——— (2006) Trace element partitioning between apatite and silicate melts. Geochimica et Cosmochimica Acta, 70, 4513–4527.Google Scholar

  • Rasmussen, B., Fletcher, I.R., Muhling, J.R., Gregory, C.J., and Wilde, S. (2011) Metamorphic replacement of mineral inclusions in detrital zircon from Jack Hills, Australia: Implications for the Hadean Earth. Geology, 39, 1143–1146.Google Scholar

  • Rubatto, D., Williams, I.S., and Buick, I.S. (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contributions to Mineralogy and Petrology, 140, 458–468.Google Scholar

  • Samson, S.D., D’Lemos, R.S., Miller, B.V., and Hamilton, M. (2005) Neoproterozoic palaeogeography of the Cadomian and Avalon terranes: constraints from detrital zircon U–Pb ages. Journal of the Geololical Society of London, 162, 65–71.Google Scholar

  • Sha, L.K., and Chappell, B.W. (1999) Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta, 63, 3861–3881.Google Scholar

  • Shore, M., and Fowler, A.D. (1996) Oscillatory zoning in minerals: A common phenomenon. Canadian Mineralogist, 34, 1111–1126.Google Scholar

  • Tartèse, R., Anand, M., Barnes, J.J., Starkey, N.A., Franchi, I.A., and Sano, Y. (2013) The abundance, distribution, and isotopic composition of hydrogen in the Moon as revealed by basaltic lunar samples: Implications for the volatile inventory of the Moon. Geochimica et Cosmochimica Acta, 122, 58–74.Google Scholar

  • Tartèse, R., Anand, M., McCubbin, F.M., Elardo, S.M., Shearer, C.K., and Franchi, I.A. (2014) Apatites in lunar KREEP basalts: The missing link to understanding the H isotope systematics of the Moon. Geology, 42, 363–366.Google Scholar

  • Tepper, J.H., and Kuehner, S.M. (1999) Complex zoning in apatite from the Idaho batholith: A record of magma mixing and intracrystalline trace element diffusion. American Mineralogist, 84, 581–595.Google Scholar

  • Valley, J.W. (2003) Oxygen isotopes in zircon. Reviews in Mineralogy and Geochemistry, 53, 343–385.Google Scholar

  • Webster, J.D., and Piccoli, P.M. (2015) Magmatic apatite: A powerful, yet deceptive, mineral. Elements Magazine, 11, 177–182.Google Scholar

  • Zheng, Y-F. (1996) Oxygen isotope fractionations involving apatites: Application to paleotemperature determination. Chemical Geology, 127, 177–187.Google Scholar

  • Zirner, A., Marks, M., Wenzel, T., Jacob, D., and Markl, G. (2015) Rare earth elements in apatite as a monitor of magmatic and metasomatic processes: The Ilimaussaq complex, South Greeland. Lithos, 228-229, 12–22.Google Scholar

About the article

* Laboratoire Magmas et Volcans, Campus Universitaire des Cézeaux, 6 Avenue Blaise Pascal, TSA 60026 – CS 60026, 63178 AUBIERE Cedex, France


Received: 2016-02-27

Accepted: 2016-08-23

Published Online: 2017-01-03

Published in Print: 2017-01-01


Citation Information: American Mineralogist, Volume 102, Issue 1, Pages 75–84, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5744.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in