Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 102, Issue 1


Cobalt mineral ecology

Robert M. Hazen
  • Corresponding author
  • Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Grethe Hystad
  • Department of Mathematics, Computer Science, and Statistics, Purdue University Northwest, Hammond, Indiana 46323, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joshua J. Golden
  • Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel R. Hummer
  • Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chao Liu
  • Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert T. Downs
  • Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shaunna M. Morrison
  • Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jolyon Ralph / Edward S. Grew
Published Online: 2017-01-03 | DOI: https://doi.org/10.2138/am-2017-5798


Minerals containing cobalt as an essential element display systematic trends in their diversity and distribution. We employ data for 66 approved Co mineral species (as tabulated by the official mineral list of the International Mineralogical Association, http://rruff.info/ima, as of 1 March 2016), representing 3554 mineral species-locality pairs (www.mindat.org and other sources, as of 1 March 2016). We find that cobalt-containing mineral species, for which 20% are known at only one locality and more than half are known from five or fewer localities, conform to a Large Number of Rare Events (LNRE) distribution. Our model predicts that at least 81 Co minerals exist in Earth’s crust today, indicating that at least 15 species have yet to be discovered—a minimum estimate because it assumes that new minerals will be found only using the same methods as in the past. Numerous additional cobalt minerals likely await discovery using micro-analytical methods.

Primary Co minerals include 26 species, most of which are hydrothermally deposited chalcogenides. We identify 33 additional plausible as yet undiscovered primary cobalt chalcogenide minerals, including 28 phases with spinel, nickeline, pyrite, and marcasite structural topologies. All 40 secondary cobalt minerals are oxides, and 37 of these phases also incorporate hydrogen. We tabulate an additional 117 plausible secondary Co minerals that are related compositionally and/or structurally to known species. New cobalt minerals are likely to be discovered in specimens collected at the 10 most prolific Co localities, all of which are mining districts with hydrothermal Co mineralization and hosting at least 10 different primary and secondary Co species.

Keywords: Cobalt; mineral ecology; new minerals; statistical mineralogy; philosophy of mineralogy; rarity; accumulation curves; LNRE distributions

References Cited

  • Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C. (2003) Handbook of Mineralogy, vol. V. Borates, Carbonates, Sulfates. Mineral Data Publishing, Tucson, Arizona.Google Scholar

  • Armentrout, M.M., Rainey, E.S.G., and Kavner, A. (2013) High-pressure and high-temperature equation of state of cobalt oxide: Implications for redox relations in Earth’s mantle. American Mineralogist 98, 993–999.Google Scholar

  • Baayen, R.H. (2001) Word Frequency Distributions. Kluwer.Google Scholar

  • Bringhurst, K.N., and Griffen, D.T. (1986) Staurolite-lusakite series. II. Crystal structure and optical properties of a cobaltoan staurolite. American Mineralogist, 71, 1466–1472.Google Scholar

  • Čech, F., Rieder, M., and Vrána, S. (1976) Cobaltoan högbomite from Zambia. Neues Jahrbuch für Mineralogie Monatshefte, 12, 525–531.Google Scholar

  • Čech, F., Povondra, P., and Vrána, S. (1981) Cobaltoan staurolite from Zambia. Bulletin de la Société française de Minéralogie et de Cristallographie, 104, 526–52.Google Scholar

  • Chauviré, B., Rondeau, B., Fritsch, E., Ressigeac, P, and Devidal, J.-L. (2015) Blue spinel from the Luc Yen district of Vietnam. Gems and Gemology, 51, 2–17.Google Scholar

  • Christy, A.G. (2015) Causes of anomalous mineralogical diversity in the Periodic Table. Mineralogical Magazine, 79, 33–49.Google Scholar

  • Downs, R.T. (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan, O03-13.Google Scholar

  • Evert, S., and Baroni, M. (2008) Statistical Models for Word Frequency Distributions, Package zipfR. http://zipfr.r-forge.r-project.org/; http://www.stefan-evert.de/PUB/EvertBaroni2007.pdf. Accessed April 12, 2016.

  • Feenstra, A. (1997) Zincohögbomite and gahnite in a diaspore-bearing metabauxite from eastern Samos (Greece): mineral chemistry, element partitioning and reaction relations. Schweizerische Mineralogische und Petrographische Mitteilungen, 77, 73–93.Google Scholar

  • Feenstra, A., Ockenga, E., Rhede, D., and Wiedenbeck, M. (2003) Li-rich zincostaurolite and its decompression-related breakdown products in a diaspore-bearing metabauxite from East Samos (Greece): An EMP and SIMS study. American Mineralogist, 88, 789–805.Google Scholar

  • Geller, S. (1967) Crystal chemistry of the garnets. Zeitschrift für Kristallographie, 125, 1–47.Google Scholar

  • Grew, E.S., and Hazen, R.M. (2014) Beryllium mineral evolution. American Mineralogist, 99, 999–1021.Google Scholar

  • Grew, E.S., Krivovichev, S.V., Hazen, R.M., and Hystad, G. (2016a) Evolution of structural complexity in boron minerals. Canadian Mineralogist, in press.Google Scholar

  • Grew, E.S., Hystad, G., Hazen, R.M., Krivovichev, S.V., and Gorelova, L.A. (2016b) Counting boron minerals in Earth’s crust: can contradictory evidence be reconciled? Geological Society of America Abstracts with Programs, 48, No. 7, doi:10.1130/abs/2016AM-278913.CrossrefGoogle Scholar

  • Hazen, R.M. (2014) Data-driven abductive discovery in mineralogy. American Mineralogist, 99, 2165–2170.Google Scholar

  • Hazen, R.M., Grew, E.S., Downs, R.T., Golden, J., and Hystad, G. (2015a) Mineral ecology: Chance and necessity in the mineral diversity of terrestrial planets. Canadian Mineralogist, 53, 295–324.Google Scholar

  • Hazen, R.M., Hystad, G., Downs, R.T., Golden, J., Pires, A., and Grew, E.S. (2015b) Earth’s “missing” minerals. American Mineralogist, 100, 2344–2347.Google Scholar

  • Hazen, R.M., Hummer, D.R., Hystad, G., Downs, R.T., and Golden, J.J. (2016) Carbon mineral ecology: Predicting the undiscovered minerals of carbon. American Mineralogist, 101, 889–906.Google Scholar

  • Herzberg, C., Vidito, C., and Starkey, N.A. (2016) Nickel-cobalt contents of olivine record origins of mantle peridotite and related rocks. American Mineralogist, 101, 1952–1966.Google Scholar

  • Hua, X., Eisenhour, D.D., and Buseck, P.R. (1995) Cobalt-rich, nickel-poor metal (wairauite) in the Ningqiang carbonaceous chondrite. Meteoritics, 30, 106–109.Google Scholar

  • Hystad, G., Downs, R.T., and Hazen, R.M. (2015a) Mineral frequency distribution data conform to a LNRE model: Prediction of Earth’s “missing” minerals. Mathematical Geosciences, 47, 647–661.Google Scholar

  • Hystad, G., Downs, R.T., Grew, E.S., and Hazen, R.M. (2015b) Statistical analysis of mineral diversity and distribution: Earth’s mineralogy is unique. Earth and Planetary Science Letters, 426, 154–157.Google Scholar

  • Kobayashi, M., and Shimizu, S. (1999) Cobalt proteins. European Journal of Biochemistry, 261, 1–9.Google Scholar

  • Kohn, J.A., and Eckart, D.W. (1962) X-ray study of synthetic diamond and associated phases. American Mineralogist, 47, 1422–1430.Google Scholar

  • Krot, A.N., Brearley, A.J., Ulyanov, A.A., Biryukov, V.V., Swindle, T.D., Keil, K., Mittlefehldt, D.W., Scott, E.R.D., Clayton, R.N., and Mayeda, T.K. (1999) Mineralogy, petrography, bulk chemical, iodine-xenon, and oxygen-isotopic compositions of dark inclusions in the reduced CV3 chondrite Efremovka. Meteoritics & Planetary Science, 34, 67–89.Google Scholar

  • Lafuente, B., Downs, R.T., Yang, H., and Stone, N. (2015) The power of databases: The RRUFF project. In T. Armbruster and R.M. Danisi, Eds., Highlights in Mineralogical Crystallography, pp. 1–30. W. de Gruyter, Berlin, Germany.Google Scholar

  • Lenaz, D., Di Benedetto, F., and Chauviré, B. (2015) EPR and XRD study of Co-bearing natural spinel from Vietnam. Periodico di Mineralogia, ECMS, 2015, 111–112.Google Scholar

  • Mantovani, L., Tribaudino, M., Bertoni, G., Salviati, G., and Bromley, G. (2014) Solid solutions and phase transitions in (Ca, M2+)M2+Si2O6 pyroxenes (M = Co, Fe, Mg). American Mineralogist, 99, 704–711.Google Scholar

  • Mellor, J.W. (1935) A Comprehensive Treatise on Inorganic and Theoretical Chemistry, volume XIV, Chapter LXVII Cobalt. Longmans, Green and Co., London.Google Scholar

  • Mielke, J.E. (1979) Composition of the Earth’s crust and distribution of the elements. In F.R. Siegel, Ed., Review of Research on Modern Problems in Geochemistry, p. 13–37. UNESCO Report, Paris.Google Scholar

  • Morimoto, N., Tokonami, M., Watanabe, M., and Koto, K. (1974) Crystal structures of three polymorphs of Co2SiO4. American Mineralogist, 59, 475–485.Google Scholar

  • National Research Council (2008) Minerals, Critical Minerals, and the U.S. Economy. National Research Council of the National Academies, Washington, D.C.Google Scholar

  • Nyström, J.O., and Wickman, EE. (1991) The Ordovician chondrite from Brunflo, central Sweden, II. Secondary minerals. Lithos, 27, 167–185.Google Scholar

  • Orcutt, M. (2011) Material world. Technology Review, July/August 2011, 24–25.Google Scholar

  • Palme, H., and Jones, A. (2005) Solar system abundances of the elements. In A.M. Davis, Ed., Meteorites, Comets and Planets (Treatise on Geochemistry), 1, p. 41–61. Elsevier.Google Scholar

  • Phillips, L.V., and Griffen, D.T. (1986) Staurolite-lusakite series. I. Synthetic Fe-Co staurolite. American Mineralogist, 71, 1461–1465.Google Scholar

  • Roth, W.L. (1958) Magnetic structures of MnO, FeO, CoCo, and NiO. Physical Review, 110, 1333–1341.Google Scholar

  • Rubin, A.E. (1997a) Mineralogy of meteorite groups. Meteoritics & Planetary Science, 32, 231–247.Google Scholar

  • ——(1997b) Mineralogy of meteorite groups: An update. Meteoritics & Planetary Science, 32, 733–734.Google Scholar

  • Rudnick, R.L., and Gao, S. (2005) Composition of the continental crust. In R.L. Rudnick, Ed., The Crust: Treatise on Geochemistry, 3, p. 1–64. Elsevier.Google Scholar

  • Setkova, T.V., Shapovalov, Yu.B., and Balitskii, V.S. (2009) Experimental growth and structural–morphological characteristics of Co-tourmaline. Doklady Earth Sciences, 424, 82–85.Google Scholar

  • Silayev, V.I., and Yanulova, L.A. (1993) Crystallochemical peculiarities of rhodonite facies containing cobalt. Doklady Akademii Nauk, 332, 624–627 (in Russian).Google Scholar

  • Skerl, A.C., Bannister, F.A., and Groves, A.W. (1934) Lusakite, a cobalt-bearing silicate from Northern Rhodesia. Mineralogical Magazine, 23, 598–606.Google Scholar

  • Sumino, Y., Kumazawa, M., Nishizawa, O., and Pluschkell, W. (1980) The elastic constants of single crystal Fe1-xO, MnO, and CoO, and the elasticity of stoichiometric magnesiowustite. Journal of Physics of the Earth, 28, 475–495.Google Scholar

  • Taran, M.N., Silayev, V.I., Khomenko, V.M., and Ivanova, I.B. (1989) A new variety of rhodonite from the manganese deposits of the Polar Urals. Doklady Akademii Nauk SSR, 308, 1211–1215 (in Russian).Google Scholar

  • Taran, M.N., Lebedev, A.S., and Platonov, A.N. (1993) Optical absorption spectroscopy of synthetic tourmalines. Physics and Chemistry of Minerals, 20, 209–220.Google Scholar

  • Taran, M.N., Koch-Müller, M., and Feenstra, A. (2009) Optical spectroscopic study of tetrahedrally coordinated Co2+ in natural spinel and staurolite at different temperatures and pressures. American Mineralogist, 94, 1647–1652.Google Scholar

  • Taylor, S.R., and McLennen, S.M. (1995) The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241–265.Google Scholar

  • Wedepohl, K.H. (1995) The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 1217–1232.Google Scholar

  • White, W.B., McCarthy, G.J., and Scheetz, B.E. (1971) Optical spectra of chromium, nickel, and cobalt-containing pyroxenes. American Mineralogist, 56, 72–89.Google Scholar

  • Young, R.S. (1979) Cobalt in biology and biochemistry. Academic Press, New York.Google Scholar

About the article

Received: 2016-04-06

Accepted: 2016-07-25

Published Online: 2017-01-03

Published in Print: 2017-01-01

Citation Information: American Mineralogist, Volume 102, Issue 1, Pages 108–116, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5798.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in