Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 102, Issue 1


Ab initio study of the structure and stability of CaMg(CO3)2 at high pressure

Natalia V. Solomatova
  • Corresponding author
  • Division of Geological and Planetary Sciences, Caltech, Pasadena, California 91125 United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paul D. Asimow
  • Division of Geological and Planetary Sciences, Caltech, Pasadena, California 91125 United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-03 | DOI: https://doi.org/10.2138/am-2017-5830


Dolomite is one of the major mineral forms in which carbon is subducted into the Earth’s mantle. End-member CaMg(CO3)2 dolomite typically breaks down upon compression into two carbonates at 5–6 GPa in the temperature range of 800–1200 K (Shirasaka et al. 2002). However, high-pressure X-ray diffraction experiments have shown that dense high-pressure polymorphs of dolomite may be favored over single-cation carbonates (Santillán et al. 2003; Mao et al. 2011; Merlini et al. 2012). Here we compare calculated dolomite structures to experimentally observed phases. Using density functional theory interfaced with a genetic algorithm that predicts crystal structures (USPEX), a monoclinic phase with space group C2/c was found to have lower energy at pressures above 15 GPa than all previously reported dolomite structures. It is possible that this phase is not observed experimentally due to a large activation energy of transition from dolomite I, resulting in the observed second-order phase transition to a metastable dolomite II. Due to the complex energy landscape for candidate high-pressure dolomite structures, several structurally unique metastable polymorphs exist. We calculate the equation of state of a set of lowest-energy dolomite polymorphs with space groups P1¯, P2/c, and C2/c up to 80 GPa. Our results demonstrate a need for calculations and experiments on Fe-Mn bearing high-pressure carbonate phases to extend our understanding of Earth’s deep carbon cycle and test whether high-pressure polymorphs of double-cation carbonates represent the main reservoir for carbon storage within downwelling regions of Earth’s mantle.

Keywords: Dolomite; ab initio; global carbon cycle; lower mantle; high pressure

References cited

  • Blöchl, P.E. (1994) Projector augmented-wave method. Physical Review B, 50, 17953.Google Scholar

  • Boulard, E., Menguy, N., Auzende, A.L., Benzerara, K., Bureau, H., Antonangeli, D., Corgne, A., Morard, G., Siebert, J., Perrillat, J.P, and Guyot, F. (2012) Experimental investigation of the stability of Fe-rich carbonates in the lower mantle. Journal of Geophysical Research: Solid Earth, 117, B02208.Google Scholar

  • Boulard, E., Pan, D., Galli, G., Liu, Z., and Mao, W.L. (2015) Tetrahedrally coordinated carbonates in Earth’s lower mantle. Nature Communications, 6, 6311.Google Scholar

  • Brenker, F.E., Vollmer, C., Vincze, L., Vekemans, B., Szymanski, A., Janssens, K., and Kaminsky, F. (2006) CO2-recycling to the deep convecting mantle. Geochimica et Cosmochimica Acta, 70, A66.Google Scholar

  • Brenker, F.E., Vollmer, C., Vincze, L., Vekemans, B., Szymanski, A., Janssens, K., Szaloki, I., Nasdala, L., Joswig, W., and Kaminsky, F. (2007) Carbonates from the lower part of transition zone or even the lower mantle. Earth and Planetary Science Letters, 260, 1–9.Google Scholar

  • Eggler, D.H. (1976) Does CO2 cause partial melting in the low-velocity layer of the mantle? Geology, 4, 69–72.Google Scholar

  • ——— (1987) Solubility of major and trace elements in mantle metasomatic fluids: Experimental constraints. Mantle Metasomatism, Academic Press London, 21–41.Google Scholar

  • Hazen, R.M., Jones, A.P., and Baross, J.A., Eds. (2013) Carbon in Earth. Reviews in Mineralogy and Geochemistry, 75, 698 p.Google Scholar

  • Isshiki, M., Irifune, T., Hirose, K., Ono, S., Ohishi, Y., Watanuki, T., Nishibori, E., Takata, M., and Sakata, M. (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature, 427, 60–63.Google Scholar

  • Kelemen, P.B., and Manning, C.E. (2015) Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proceedings of the National Academy of Sciences, 112, E3997–E4006.Google Scholar

  • Kresse, G., and Furthmüller, J. (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15–50.Google Scholar

  • Mao, Z., Armentrout, M., Rainey, E., Manning, C.E., Dera, P., Prakapenka, V.B., and Kavner, A. (2011) Dolomite III: A new candidate lower mantle carbonate. Geophysical Research Letters, 38, L22303.Google Scholar

  • Martinez, I., Zhang, J., and Reeder, R.J. (1996) In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature; evidence for dolomite breakdown to aragonite and magnesite. American Mineralogist, 81, 611–624.Google Scholar

  • Merlini, M., Crichton, W.A., Hanfland, M., Gemmi, M., Müller, H., Kupenko, I., and Dubrovinsky, L. (2012) Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proceedings of the National Academy of Sciences, 109, 13509–13514.Google Scholar

  • Momma, K., and Izumi, F. (2008) VESTA: A three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41, 653–658.Google Scholar

  • Mörner, N.A., and Etiope, G. (2002) Carbon degassing from the lithosphere. Global and Planetary Change, 33, 185–203.Google Scholar

  • Murakami, M., Hirose, K., Kawamura, K., Sata, N., and Ohishi, Y. (2004) Postperovskite phase transition in MgSiO3. Science, 304, 855–858.Google Scholar

  • Oganov, A.R., and Glass, C.W. (2006) Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. The Journal of Chemical Physics, 124, 244704.Google Scholar

  • Oganov, A.R., and Ono, S. (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D” layer. Nature, 430, 445–448.Google Scholar

  • Oganov, A.R., Glass, C.W., and Ono, S. (2006) High-pressure phases of CaCO3: Crystal structure prediction and experiment. Earth and Planetary Science Letters, 241, 95–103.Google Scholar

  • Oganov, A.R., Ono, S., Ma, Y., Glass, C.W., and Garcia, A. (2008) Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth’s lower mantle. Earth and Planetary Science Letters, 273, 38–47.Google Scholar

  • Oganov, A.R., Hemley, R.J., Hazen, R.M., and Jones, A.P. (2013) Structure, bonding, and mineralogy of carbon at extreme conditions. Reviews in Mineralogy and Geochemistry, 75, 47–77.Google Scholar

  • Ono, S., Kikegawa, T., Ohishi, Y., and Tsuchiya, J. (2005) Post-aragonite phase transformation in CaCO3 at 40 GPa. American Mineralogist, 90, 667–671.Google Scholar

  • Perdew, J.P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation made simple. Physical Review Letters, 77, 3865.Google Scholar

  • Ross, N.L., and Reeder, R.J. (1992) High-pressure structural study of dolomite and ankerite. American Mineralogist, 77, 412–421.Google Scholar

  • Santillán, J., Williams, Q., and Knittle, E. (2003) Dolomite-II: A high-pressure polymorph of CaMg(CO3)2. Geophysical Research Letters, 30, 1054.Google Scholar

  • Shcheka, S.S., Wiedenbeck, M., Frost, D.J., and Keppler, H. (2006) Carbon solubility in mantle minerals. Earth and Planetary Science Letters, 245, 730–742.Google Scholar

  • Shirasaka, M., Takahashi, E., Nishihara, Y., Matsukage, K., and Kikegawa, T. (2002) In situ X-ray observation of the reaction dolomite = aragonite + magnesite at 900–1300 K. American Mineralogist, 87, 922–930.Google Scholar

  • Skorodumova, N.V., Belonoshko, A.B., Huang, L., Ahuja, R., and Johansson, B. (2005) Stability of the MgCO3 structures under lower mantle conditions. American Mineralogist, 90, 1008–1011.Google Scholar

  • Smyth, J.R., and Ahrens, T.J. (1997) The crystal structure of calcite III. Geophysical Research Letters, 24, 1595–1598.Google Scholar

  • Sobolev, N.V., and Shatsky, V.S. (1990) Diamond inclusions in garnets from metamorphic rocks: A new environment for diamond formation. Nature, 343, 742–746.Google Scholar

  • Sturhahn, W. (2015) MINUTI open source software, ver. 1.1.2, www.nrixs.com. Accessed on March 2015.

  • Wyllie, P.J., Baker, M.B., and White, B.S. (1990) Experimental boundaries for the origin and evolution of carbonatites. Lithos, 26, 3–19.Google Scholar

About the article

Received: 2016-04-26

Accepted: 2016-08-24

Published Online: 2017-01-03

Published in Print: 2017-01-01

Citation Information: American Mineralogist, Volume 102, Issue 1, Pages 210–215, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5830.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in