Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 102, Issue 1

Issues

Effect of composition on compressibility of skiagite-Fe-majorite garnet

Leyla Ismailova
  • Corresponding author
  • Bayerisches Geoinstitut, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
  • Laboratory of Crystallography, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
  • Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 ul. Kosygina, Moscow 119991, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maxim Bykov
  • Bayerisches Geoinstitut, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elena Bykova
  • Bayerisches Geoinstitut, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrey Bobrov / Ilya Kupenko
  • Bayerisches Geoinstitut, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
  • ESRF-The European Synchrotron CS40220 38043 Grenoble Cedex 9 France
  • Institut für Mineralogie, University of Münster, Corrensstrasse 24, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Valerio Cerantola
  • Bayerisches Geoinstitut, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
  • ESRF-The European Synchrotron CS40220 38043 Grenoble Cedex 9 France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Denis Vasiukov
  • Bayerisches Geoinstitut, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
  • Laboratory of Crystallography, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Natalia Dubrovinskaia
  • Laboratory of Crystallography, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Catherine McCammon
  • Bayerisches Geoinstitut, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Hanfland / Konstantin Glazyrin / Hanns-Peter Liermann / Alexander Chumakov / Leonid Dubrovinsky
  • Bayerisches Geoinstitut, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-03 | DOI: https://doi.org/10.2138/am-2017-5856

Abstract

Skiagite-Fe-majorite garnets were synthesized using a multianvil apparatus at 7.5–9.5 GPa and 1400–1600 K. Single-crystal X-ray diffraction at ambient conditions revealed that synthesized garnets contain 23 to 76% of an Fe-majorite component. We found that the substitution of Fe2+ and Si4+ for Fe3+ in the octahedral site decreases the unit-cell volume of garnet at ambient conditions. Analysis of single-crystal X-ray diffraction data collected on compression up to 90 GPa of garnets with different compositions reveals that with increasing majorite component the bulk modulus increases from 159(1) to 172(1) GPa. Our results and literature data unambiguously demonstrate that the total iron content and the Fe3+/Fe2+ ratio in (Mg, Fe)-majorites have a large influence on their elasticity. At pressures between 50 and 60 GPa we observed a significant deviation from a monotonic dependence of the molar volumes of skiagite-Fe-majorite garnet with pressure, and over a small pressure interval the volume dropped by about 3%. By combining results from single-crystal X-ray diffraction and high-pressure synchrotron Mössbauer source spectroscopy we demonstrate that these changes in the compressional behavior are associated with changes of the electronic state of Fe in the octahedral site.

Keywords: Skiagite-majorite garnet; single-crystal X-ray diffraction; Mössbauer spectroscopy; equation of state; upper mantle; transition zone

References cited

  • Ahrens, T.J. (1995) Elastic constants of mantle minerals at high temperature. In O.L. Anderson and D.G. Isaak, Eds., Mineral Physics and Crystallography: A handbook of physical constants, p. 64–97. AGU Publications, Washington, D.C.Google Scholar

  • Akaogi, M., and Akimoto, S. (1977) Pyroxene-garnet solid-solution equilibria in the systems Mg4Si4O12-Mg3Al2Si3O12 and Fe4Si4O12-Fe3Al2Si3O12. Physics of the Earth and Planetary Interiors, 15, 90–106.Google Scholar

  • Amthauer, G., Annersten, H., and Hafner, S.S. (1976) The Mössbauer spectrum of 57Fe in silicate garnets. Zeitschrift für Kristallographie, 143, 14–55.Google Scholar

  • Angel, R.J., Gonzalez-Platas, J., and Alvaro, M. (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie, 229, 405–419.Google Scholar

  • Badro, J., Fiquet, G., Struzhkin, V.V., Somayazulu, M., Mao, H., Shen, G., and Le Bihan, T. (2002) Nature of the high-pressure transition in Fe2O3 hematite. Physical Review Letters, 89, 205504.Google Scholar

  • Bengtson, A., Li, J., and Morgan, D. (2009) Mossbauer modeling to interpret the spin state of iron in (Mg, Fe)SiO3 perovskite. Geophysical Research Letters, 36, L15301.Google Scholar

  • Bobrov, A.V., Kojitani, H., Akaogi, M., and Litvin, Y.A. (2008) Phase relations on the diopside–jadeite–hedenbergite join up to 24 GPa and stability of Nabearing majoritic garnet. Geochimica et Cosmochimica Acta, 72, 2392–2408.Google Scholar

  • Bykova, E., Bykov, M., Prakapenka, V., Konôpková, Z., Liermann, H.-P., Dubrovinskaia, N., and Dubrovinsky, L.S. (2013) Novel high pressure monoclinic Fe2O3 polymorph revealed by single-crystal synchrotron X-ray diffraction studies. High Pressure Research, 33, 534–545.Google Scholar

  • Bykova, E., Bobrov, A.V., Sirotkina, E.A., Bindi, L., Ovsyannikov, S.V., Dubrovin-sky, L.S., and Litvin, Y.A. (2014) X-ray single-crystal and Raman study of knorringite, Mg3(Cr1.58Mg0.21Si0.21)Si3O12, synthesized at 16 GPa and 1,600 °C. Physics and Chemistry of Minerals, 41, 267–272.Google Scholar

  • Cerantola, V., McCammon, C., Kupenko, I., Kantor, I., Marini, C., Wilke, M., Ismailova, L., Solopova, N., Chumakov, A., Pascarelli, S., and others. (2015) High-pressure spectroscopic study of siderite (FeCO3) with a focus on spin crossover. American Mineralogist, 100, 2670–2681.Google Scholar

  • Duffy, T.S., and Anderson, D.L. (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. Journal of Geophysical Research, 94, 1895.Google Scholar

  • Dymshits, A.M., Litasov, K.D., Shatskiy, A., Sharygin, I.S., Ohtani, E., Suzuki, A., Pokhilenko, N.P., and Funakoshi, K. (2014a) P-V-T equation of state of Na-majorite to 21 GPa and 1673 K. Physics of the Earth and Planetary Interiors, 227, 68–75.

  • Dymshits, A.M., Litasov, K.D., Sharygin, I.S., Shatskiy, A., Ohtani, E., Suzuki, A., and Funakoshi, K. (2014b) Thermal equation of state of majoritic knorringite and its significance for continental upper mantle. Journal of Geophysical Research B: Solid Earth, 1–13.Google Scholar

  • Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104, 9182–9186.Google Scholar

  • Friedrich, A., Winkler, B., Morgenroth, W., Ruiz-Fuertes, J., Koch-Müller, M., Rhede, D., and Milman, V. (2014) Pressure-induced spin collapse of octahedrally coordinated Fe3+ in Ca3Fe2[SiO4]3. Physical Review B, 90, 094105.Google Scholar

  • Friedrich, A., Winkler, B., Morgenroth, W., Perlov, A., and Milman, V. (2015) Pressure-induced spin collapse of octahedrally coordinated Mn3+ in the tetragonal hydrogarnet henritermierite Ca3Mn2[SiO4]2[O4H4]. Physical Review B, 92, 014117.Google Scholar

  • Gwanmesia, G.D., Wang, L., Triplett, R., and Liebermann, R.C. (2009) Pressure and temperature dependence of the elasticity of pyrope–majorite [Py60Mj40 and Py50Mj50] garnets solid solution measured by ultrasonic interferometry technique. Physics of the Earth and Planetary Interiors, 174, 105–112.Google Scholar

  • Hazen, R.M., Downs, R.T., Conrad, P.G., Finger, L.W., and Gasparik, T. (1994) Comparative compressibilities of majorite-type garnets. Physics and Chemistry of Minerals, 21, 344–349.Google Scholar

  • Heinemann, S., Sharp, T.G., and Seifert, F. (1997) The cubic-tetragonal phase transition in the system majorite and garnet symmetry in the Earth’s transition zone. Physics and Chemistry of Minerals, 24, 206–221.Google Scholar

  • Hsu, H., Blaha, P., Cococcioni, M., and Wentzcovitch, R.M. (2011) Spin-state crossover and hyperfine interactions of ferric iron in MgSiO3 perovskite. Physical Review Letters, 106, 118501.Google Scholar

  • Irifune, T., Higo, Y., Inoue, T., Kono, Y., Ohfuji, H., and Funakoshi, K. (2008) Sound velocities of majorite garnet and the composition of the mantle transition region. Nature, 451, 814–817.Google Scholar

  • Ismailova, L., Bobrov, A., Bykov, M., Bykova, E., Cerantola, V., Kupenko, I., McCammon, C., Dyadkin, V., Chernyshov, D., Pascarelli, S., and others. (2015) High-pressure synthesis of skiagite-majorite garnet and investigation of its crystal structure. American Mineralogist, 100, 2650–2654.Google Scholar

  • Ita, J., and Stixrude, L. (1992) Petrology, elasticity, and composition of the mantle transition. Journal of Geophysical Research, 97(B5), 6849–6866.Google Scholar

  • Kantor, I., Dubrovinsky, L., and McCammon, C. (2006) Spin crossover in (Mg, Fe)O: A Mössbauer effect study with an alternative interpretation of X-ray emission spectroscopy data. Physical Review B, 73, 100101.Google Scholar

  • Kato, T. (1986) Stability relation of (Mg, Fe)SiO3 garnets, major constituents in the Earth’s interior. Earth and Planetary Science Letters, 77, 399–408.Google Scholar

  • Lavina, B., Dera, P., Downs, R.T., Prakapenka, V., Rivers, M., Sutton, S., and Nicol, M. (2009) Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition. Geophysical Research Letters, 36, L23306.Google Scholar

  • Li, B., and Liebermann, R.C. (2007) Indoor seismology by probing the Earth’s interior by using sound velocity measurements at high pressures and temperatures. Proceedings of the National Academy of Sciences, 104(22), 9145–9150.Google Scholar

  • Liermann, H.-P., Konôpková, Z., Morgenroth, W., Glazyrin, K., Bednarčik, J., McBride, E.E., Petitgirard, S., Delitz J.T., Wendt, M., Bican, Y, and others. (2015) The Extreme Conditions Beamline P02.2 and the Extreme Conditions Science Infrastructure at PETRA III. Journal of Synchrotron Radiation, 22, 1–17.Google Scholar

  • Liu, J., Chen, G., Gwanmesia, G.D., and Liebermann, R.C. (2000) Elastic wave velocities of a pyrope-majorite garnets (Py62Mj38 and Py50Maj50) to 9 GPa. Physics of the Earth and Planetary Interiors, 120, 153–163.Google Scholar

  • Luth, R.W., Virgo, D., Boyd, F.R., and Wood, B.J. (1990) Ferric iron in mantle-derived garnets. Implications for thermobarometry and for the oxidation state of the mantle, Contributions to Mineralogy and Petrology, 104, 56–72.Google Scholar

  • Matsubara, R., Toraya, H., Tanaka, S., and Sawamoto, H. (1990) Precision latticeparameter determination of (Mg, Fe)SiO3 tetragonal garnets. Science, 697–699.

  • McCammon, C.A., and Ross, N.L. (2003) Crystal chemistry of ferric iron in (Mg, Fe)(Si, Al)O3 majorite with implications for the transition zone. Physics and Chemistry of Minerals, 30, 206–216.Google Scholar

  • Merlini, M., and Hanfland, M. (2013) Single-crystal diffraction at megabar conditions by synchrotron radiation. High Pressure Research, 33, 511–522.Google Scholar

  • Merlini, M., Hanfland, M., Gemmi, M., Huotari, S., Simonelli, L., and Strobel, P. (2010) Fe3+ spin transition in CaFe2O4 at high pressure. American Mineralogist, 95, 200–203.Google Scholar

  • Milman, V., Akhmatskaya, E.V., Nobes, R.H., Winkler, B., Pickard, C.J., and White, J.A. (2001) Systematic ab initio study of the compressibility of silicate garnets. Acta Crystallographica, B57, 163–177.Google Scholar

  • Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272–1276.Google Scholar

  • Novak, G.A., and Gibbs, G.V. (1971) The crystal chemistry of the silicate garnets. American Mineralogist, 56, 791–825.Google Scholar

  • Ohtani, E., Kagawa, N., and Fujino, K. (1991) Stability of majorite (Mg, Fe)SiO3 at high pressures and 1800 °C. Earth and Planetary Science Letters, 102, 158–166.Google Scholar

  • Oxford Diffraction (2006) CrysAlisPro. Oxford Diffraction Ltd., Abingdon, Oxfordshire, U.K.Google Scholar

  • Petříček, V., Dušek, M., and Palatinus, L. (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie, 229, 345–352.Google Scholar

  • Prescher, C., McCammon, C., and Dubrovinsky, L. (2012) MossA: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. Journal of Applied Crystallography, 45, 329–331.Google Scholar

  • Ringwood, A.E. (1975) Composition and petrology of the Earth’s upper mantle.

  • Rüffer, R., and Chumakov, A.I. (1996) Nuclear Resonance Beamline at ESRF. Hyperfine Interactions, 97-98, 589–604.Google Scholar

  • Sinogeikin, S.V., and Bass, J.D. (2000) Single-crystal elasticity of pyrope and MgO to 20 GPa by Brillouin scattering in the diamond cell. Physics of the Earth and Planetary Interiors, 120, 43–62.Google Scholar

  • —(2002) Elasticity of pyrope and majorite-pyrope solid solutions to high temperatures. Earth and Planetary Science Letters, 203, 549–555.Google Scholar

  • Sirotkina, E.A., Bobrov, A.V., Bindi, L., and Irifune, T. (2015) Phase relations and formation of chromium-rich phases in the system Mg4Si4O12-Mg3Cr2Si3O12 at 10-24 GPa and 1,600 °C. Contributions to Mineralogy and Petrology, 169, doi:10.1007/s00410-014-1097–0.CrossrefGoogle Scholar

  • Stan, C.V., Wang, J., Zouboulis, I.S., Prakapenka, V., and Duffy, T.S. (2015) High-pressure phase transition in Y3Fe5O12. Journal of Physics: Condensed Matter, 27, 405401.Google Scholar

  • Tomioka, N., Fujino, K., Ito, E., Katsura, T., Sharp, T.G., and Kato, T. (2002) Microstructures and structural phase transition in (Mg, Fe)SiO3 majorite. European Journal of Mineralogy, 14, 7–14.Google Scholar

  • Wood, B.J., Pawley, A., and Frost, D. (1996) Water and carbon in the Earth’s mantle. Philosophical Transactions of the Royal Society of London, 354, 1495–1511.Google Scholar

  • Wood, B.J., Kiseeva, E.S., and Matzen, A.K. (2013) Garnet in the Earth’s mantle. Elements, 9, 421–426.Google Scholar

  • Woodland, A.B., and Koch, M. (2003) Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth and Planetary Science Letters, 214, 295–310.Google Scholar

  • Woodland, A.B., and Ross, C.R. (1994) A crystallographic and Mössbauer spec-troscopy study of Fe3Al2Si3O12-Fe32+Fe23+ Si3O12 and Ca3Fe32+ Si3O12. Physics and Chemistry of Minerals, 21, 117–132.Google Scholar

  • Woodland, A.B., Angel, R.J., Koch, M., Kunz, M., and Miletich, R. (1999) Equations of state for Fe3Fe2Si3O12 and Fe2SiO4-Fe3O4 spinel solid solutions. Journal of Geophysical Research, 104, 20049–20058.Google Scholar

  • Woodland, A.B., Bauer, M., Boffa Ballaran, T., and Hanrahan, M. (2009) Crystal chemistry of Fe32+ Cr2Si3O12-Fe32+Fe23+ Si3O12 garnet solid solutions and related spinels. American Mineralogist, 94, 359–366.Google Scholar

  • Xu, W., Greenberg, E., Rozenberg, G.K., Pasternak, M.P., Bykova, E., Boffa-Ballaran, T., Dubrovinsky, L., Prakapenka, V., Hanfland, M., Vekilova, O.Y., and others. (2013) Pressure-induced hydrogen bond symmetrization in iron oxyhydroxide. Physical Review Letters, 111, 175501.Google Scholar

About the article

Received: 2016-05-16

Accepted: 2016-08-29

Published Online: 2017-01-03

Published in Print: 2017-01-01


Citation Information: American Mineralogist, Volume 102, Issue 1, Pages 184–191, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5856.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in