Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2017: 2.645

CiteScore 2017: 2.31

SCImago Journal Rank (SJR) 2017: 1.440
Source Normalized Impact per Paper (SNIP) 2017: 1.059

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 102, Issue 1

Issues

Deprotonation of Fe-dominant amphiboles: Single-crystal HT-FTIR spectroscopic studies of synthetic potassic-ferro-richterite

Giancarlo Della Ventura
  • Dipartimento di Scienze, Universita di Roma Tre, I-00146 Roma, Italy
  • Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Umberto Susta / Fabio Bellatreccia
  • Dipartimento di Scienze, Universita di Roma Tre, I-00146 Roma, Italy
  • Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Augusto Marcelli
  • Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Günther J. Redhammer / Roberta oberti
Published Online: 2017-01-03 | DOI: https://doi.org/10.2138/am-2017-5859

ABSTRACT

High-temperature Fourier transform infrared (HT-FTIR) spectroscopy was used to characterize the deprotonation process of synthetic potassic-ferro-richterite of composition A(K0.90Na0.07)B(Ca0.54Na1.46)cFe4.222+Fe0.783+TSi8O22WOH1.70O0.302. Unpolarized single-crystal spectra were collected both in situ and on quenched samples, and heating experiments were conducted in air, at a rate of 10 °C/min. The room-T spectrum measured before annealing shows a main band at 3678 cm-1 and a minor band at 3622 cm-1; these are assigned to local configurations involving Fe2+ at M(1)M(1)M(3) and facing a filled and an empty alkali-site, respectively. At 400 °C, a new band grows at 3656 cm-1; this is the most intense feature in the pattern at 450 °C. At T ≥ 500 °C, all peaks decrease drastically in intensity, and finally disappear at T > 600 °C. The total absorbance measured in situ increases significantly in the 25 < T < 450 °C range, although the spectra collected on quenched samples show no OH loss in the same T range. This feature is consistent with an increase of the absorption coefficient (ε) with T, the reason for which is still unclear. However, this feature has significant implications for the quantitative use of FTIR data in HT experiments. Examination of the relevant OH-stretching bands shows that iron oxidation occurs preferentially at the M(1,3) sites associated with occupied A sites. The deprotonation temperature indicated by FTIR for single-crystals is around 100 °C higher that that obtained by HT-X-ray diffraction (XRD) on single crystal by Oberti et al. (2016), whereas that obtained by HT-XRD on powders is intermediate. This unexpected observation can be explained by considering that: (1) the iron oxidation process, which is coupled to deprotonation and is probed by XRD, occurs preferentially at the crystal surface where it is triggered by the availability of atmospheric oxygen; (2) the proton diffusion, probed by FTIR, is slower that the electron diffusion probed by XRD; thus, the temperature shift may be explained by a much longer escape path for H in single-crystals than in powders. These results suggest that possible effects due to crystals size should be carefully considered in HT experiments done on Fe-rich silicates.

Keywords: HT-FTIR spectroscopy; amphiboles; potassic-ferro-richterite; deprotonation process

References cited

  • Addison, W.E., and Sharp, J.H. (1962) Amphiboles. Part III. The reduction of crocidolite. Journal of Chemical Society, 3693-3698.

  • —(1968) Redox behavior of iron in hydroxylated silicates. Eleventh Conference on Clays and Clay Minerals. Abstracts, 95-104.Google Scholar

  • Addison, W.E., and White, A.D. (1968) The oxidation of Bolivian crocidolite. Mineralogical Magazine, 36, 791-796.Google Scholar

  • Addison, C.C., Addison, W.E., Neal, G.H., and Sharp, J.H. (1962a) Amphiboles. Part I. The oxidation of crocidolite. Journal of Chemical Society, 1468-1471.

  • Addison, W.E., Neal, G.H., and Sharp, J.H. (1962b) Amphiboles. Part II. The kinetics of oxidation of crocidolite. Journal of Chemical Society, 1472-1475.

  • Aines, R.D., and Rossman, G.R. (1985) The high temperature behavior of trace hydrous components in silicate minerals. American Mineralogist, 70, 1169-1179.Google Scholar

  • Clark, R.N., King, T.V.V., Klejwa, M., Swayze, G.A., and Vergo, N. (1990) High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Researches, 95, 12653-12680.Google Scholar

  • Clowe, C.A., Popp, R.K., and Fritz, F.J. (1988) Experimental investigation of the effect of oxygen fugacity on ferric-ferrous ratios and unit-cell parameters of four natural clino-amphiboles. American Mineralogist, 73, 487-499.Google Scholar

  • Della Ventura, G. (1992) Recent developments in the synthesis and characterization of amphiboles. Synthesis and crystal-chemistry of richterites. Trends in Mineralogy, 1, 153-192.Google Scholar

  • Della Ventura, G., Robert, J.-L., and Hawthorne, F.C. (1996) Infrared spectroscopy of synthetic (Ni, Mg, Co)-potassium-richterite. Geochimica and Cosmochimica Acta, 5, 55-63.Google Scholar

  • Della Ventura, G., Robert, J.-L., Raudsepp, M., Hawthorne, F.C., and Welch, M. (1997) Site occupancies in synthetic monoclinic amphiboles: Rietveld structure-refinement and infrared spectroscopy of (nickel, magnesium, cobalt)-richterite. American Mineralogist, 82, 291-301.Google Scholar

  • Della Ventura, G., Robert, J.-L., Hawthorne, F.C., Raudsepp, M., and Welch, M.D. (1998) Contrasting [6] Al ordering in synthetic Mg- and Co-pargasite. Canadian Mineralogist, 36, 1237-1244.Google Scholar

  • Della Ventura, G., Hawthorne, F.C., Robert, J.-L., Delbove, F., Welch, M.D., Raudsepp, M. (1999) Short-range order of cations in synthetic amphiboles along the richterite-pargasite join. European Journal of Mineralogy, 11, 79-94.Google Scholar

  • Della Ventura, G., Robert, J.-L., Sergent, J., Hawthorne, F.C., and Delbove, F. (2001) Constraints on F vs. OH incorporation in synthetic [6] Al-bearing monoclinic amphiboles. European Journal of Mineralogy, 13, 841-847.Google Scholar

  • Della Ventura, G., Redhammer, G.J., Iezzi, G., Hawthorne, Papin, A., and Robert, J.-L. (2005a) A Mössbauer and FTIR study of synthetic amphiboles along the magnesioriebeckite-ferri-clinoholmquistite join. Physics and Chemistry of Minerals, 32, 103-113.Google Scholar

  • Della Ventura, G., Iezzi, G., Redhammer, G.J., Hawthorne, F.C., Scaillet, B., and Novembre, D. (2005b) Synthesis and crystal-chemistry of alkali amphiboles in the system Na2O-MgO-FeO-Fe2O3-SiO2-H2O as a function of fo2. American Mineralogist, 90, 1375-1383.Google Scholar

  • Della Ventura, G., Oberti, R., Hawthorne, F.C., and Bellatreccia, F. (2007) Single-crystal FTIR study Ti-rich pargasites from Lherz: the spectroscopic detection of O3O2- in amphiboles. American Mineralogist, 92, 1645-1651.Google Scholar

  • Della Ventura, G., Bellatreccia, F., Radica, F., Chopin, C., and Oberti, R. (2014) The arrojadite enigma III. The incorporation of volatiles: a polarised FTIR spectroscopy study. European Journal of Mineralogy, 26, 679-688.Google Scholar

  • Della Ventura, G., Redhammer, G.J., Robert, J.L., Sergent, J., and Iezzi, G. (2016) Synthesis and crystal chemistry of amphiboles along the join richterite-ferrorichterite: a combined spectroscopic (FTIR, Mössbauer), XRPD and microchemical study. Canadian Mineralogist, in press.Google Scholar

  • Ernst, W.G., and Wai, M. (1970) Mössbauer, infrared, X-ray and optical study of cation ordering and dehydrogenation in natural and heat-treated sodic amphiboles. American Mineralogist, 55, 1226-1258.Google Scholar

  • Gottschalk, M., and Andrut, M. (1998) Structural and chemical characterization of synthetic (Na, K)-richterite solid-solutions by EMP, HRTEM, XRD, and OH-valence vibrational spectroscopy. Physics and Chemistry of Minerals, 25, 101-111.Google Scholar

  • Hawthorne, F.C., and Della Ventura, G. (2007) Short-range order in amphiboles. In F.C. Hawthorne, R. Oberti, G. Della Ventura, and A. Mottana, Eds., Am-phiboles: Crystal chemistry, occurrence, and health issues, 67, p. 173-222. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.Google Scholar

  • Hawthorne, F.C., and Oberti, R., (2007) Amphiboles: Crystal Chemistry. In F.C. Hawthorne, R. Oberti, G. Della Ventura, and A. Mottana, Eds., Amphiboles: Crystal chemistry, occurrence, and health issues, 67, p. 1-54. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.Google Scholar

  • Hawthorne, F.C., Oberti, R., and Sardone, N. (1996) Sodium at the A site in clinoamphiboles: the effects of composition on patterns of order. Canadian Mineralogist, 34, 577-593.Google Scholar

  • Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., and Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist, 97, 2031-2048.Google Scholar

  • Hodgson, A.A., Freeman, A.G., Taylor, H.F.V. (1965) The thermal decomposition of crocidolite from Koegas, South Africa. Mineralogical Magazine 35, 5-29.Google Scholar

  • Hoover, G.P., Robinson, E.A., McQuate, R.S., Schreiber, H.D., and Spencer, J.N. (1969) Temperature dependence of the molar absorptivity of the OH stretching vibration. The Journal of Physical Chemistry, 73, 4027-4029.Google Scholar

  • Iezzi, G., Cámara, F., Della Ventura, G., Oberti, R., Pedrazzi, G., and Robert, J.-L. (2004) Synthesis, crystal structure and crystal-chemistry of ferri-clino-holmquistite, Li2Mg3Fe23+Si8O22(OH)2. Physics and Chemistry of Minerals, 31, 375-385.Google Scholar

  • Iezzi, G., Della Ventura, G., Hawthorne, F.C., Pedrazzi, G., Robert, J.-L., and Novembre, D. (2005) The (Mg, Fe2+) substitution in ferri-clinoholmquistite, □Li2(Mg, Fe2+)3Fe3+O22(OH)2. European Journal of Mineralogy, 17, 733-740.Google Scholar

  • Keppler, H., and Bagdassarov, N.S. (1993) High-temperature FTIR spectra of H2O in rhyolite melt to 1300 °C. American Mineralogist, 78, 1324-1327.Google Scholar

  • Laukamp, C., Termin, K.A., Pejcic, B., Haest, M., and Cudahy, T. (2012) Vibrational spectroscopy of calcic amphiboles-applications for exploration and mining. European Journal of Mineralogy, 24, 863-878.Google Scholar

  • Libowitzky, E., and Rossman, G.R. (1996) Principles of quantitative absorbance measurements in anisotropic crystals. Physics and Chemistry of Minerals, 23, 375-385.Google Scholar

  • —(1997) An IR absorption calibration for water in minerals. American Mineralogist, 23, 319-327.Google Scholar

  • Mustard, J.F. (1992) Chemical analysis of actinolite from reflectance spectra. American Mineralogist, 77, 345-358.Google Scholar

  • Oberti, R., Zema, M., and Boiocchi, M. (2012) High-temperature behaviour of ferroholmquistite: thermal expansion and dehydrogenation. Proceedings of the 41st Congress of the Italian Crystallographic Association, 136.Google Scholar

  • Oberti, R., Boiocchi, M., Welch, M.D., and Zema, M. (2013) Towards a model for HT behaviour of (orthorhombic and monoclinic) amphiboles. Proceedings of the GAC-MAC Meeting, p. 153, Mineralogical Association of Canada.Google Scholar

  • Oberti, R., Boiocchi, M., Zema, M., and Della Ventura, G. (2016) Synthetic potassic-ferro-richterite: 1. Composition, crystal structure refinement and HT behavior by in operando single-crystal X-ray diffraction. Canadian Mineralogist, 54, 1-17.Google Scholar

  • Okumura, S., and Nakashima, S. (2005) Molar absorptivities of OH and H2O in rhyolitic glass at room temperature and at 400-600 °C. American Mineralogist, 90, 441-447.Google Scholar

  • Paterson, M.S. (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bulletin de Minéralogie, 105, 20-29.Google Scholar

  • Phillips, M.W., Popp, R.K., and Clowe, C.A. (1988) Structural adjustments accompanying oxidation-dehydrogenation in amphiboles. American Mineralogist, 73, 500-506.Google Scholar

  • Phillips, M.W., Draheim, J.E., Popp, R.K., Clowe, C.A., and Pinkerton, A.A. (1989) Effect of oxidation-dehydrogenation in tschermakitic hornblende. American Mineralogist, 74, 764-773.Google Scholar

  • Phillips, M.W., Popp, R.K., and Clowe, C.A. (1991) A structural investigation of oxidation effects in air-heated grunerite. American Mineralogist, 76, 1502-1509.Google Scholar

  • Radica, F., Della Ventura, G., Bellatreccia, F., and Cestelli Guidi, M. (2016a) HT-FTIR micro-spectroscopy of cordierite: the CO2 absorbance from in situ and quenched experiments. Physics and Chemistry of Minerals, 43, 69-81.Google Scholar

  • Radica, F., Della Ventura, G., Bellatreccia, F., Cinque, G., and Cestelli Guidi, M. (2016b) The diffusion kinetics of CO2 in cordierite: an HT-FTIR micro-spectroscopy study. Contributions to Mineralogy and Petrology, 171, 12, doi: .CrossrefGoogle Scholar

  • Redhammer, G.J., and Roth, G. (2002) Crystal structure and Mössbauer spectros-copy of the synthetic amphibole potassic-ferri-ferrorichterite at 298 K and low temperatures (80-110 K). European Journal of Mineralogy, 14, 105-114.Google Scholar

  • Robert, J.L., Della Ventura, G., and Thauvin, J.L. (1989) The infrared OH stretching region of synthetic richterites in the system Na2O K2O CaO MgO SiO2 H2O-HF. European Journal of Mineralogy, 1, 203-211.Google Scholar

  • Robert, J.-L., Della Ventura, G., Hawthorne, F.C. (1999) Near-infrared study of short-range disorder of OH and F in monoclinic amphiboles. American Mineralogist, 84, 86-91.Google Scholar

  • Robert, J.-L., Della Ventura, G., Welch, M., Hawthorne, F.C. (2000) OH-F substitution in synthetic pargasite at 1.5 kbar, 850 °C. American Mineralogist, 85, 926-931.Google Scholar

  • Schmidbauer, E., Kunzmann, Th., Fehr, Th., and Hochleitner, R. (2000) Electrical resistivity and 57Fe Mossbauer spectra of Fe-bearing calcic amphiboles. Physics and Chemistry of Minerals, 27, 347-356.Google Scholar

  • Susta, U. (2016) Dehydration and deprotonation processes in minerals: development of new spectroscopic techniques, 164 p. Ph.D. thesis, University of Roma Tre, Italy.

  • Tokiwai, K., and Nakashima, S. (2010a) Integral molar absorptivities of OH in muscovite at 20 to 650 °C by in-situ high-temperature IR microspectroscopy. American Mineralogist, 95, 1052-1059.Google Scholar

  • —(2010b) Dehydration kinetics of muscovite by in situ infrared microspectroscopy. Physics and Chemistry of Minerals, 37, 91-101.Google Scholar

  • Ungaretti, L. (1980) Recent developments in X-ray single crystal diffractometry applied to the crystal-chemical study of amphiboles. Godisnjak Jugonslaven-skog Centra za Kristalografiju, 15, 29-65.Google Scholar

  • Wang, L., Zhang, M., Redfern, S.A.T., and Zang, Z.Y. (2002) Dehydroxylation and transformations of the 2:1 phyllosilicate pyrophyllite at elevated temperatures: an infrared spectroscopic study. Clays and Clay Minerals, 50, 272-283.Google Scholar

  • Wang, D., Guo, Y., Yu, Y., and Karato, S. (2012) Electrical conductivity of am-phibole-bearing rocks: influence of dehydration. Contributions to Mineralogy and Petrology, 164, 17-25.Google Scholar

  • Ward, J.R. (1975) Kinetics of talc dehydroxylation. Thermochimica Acta, 13, 7-14.Google Scholar

  • Welch, M.D., Cámara, F., Della Ventura, G., and Iezzi, G. (2007) Non-ambient in situ studies of amphiboles. In F.C. Hawthorne, R. Oberti, G. Della Ventura, and A. Mottana, Eds., Amphiboles: Crystal chemistry, occurrence, and health issues, 67, p. 223-260. Reviews in Mineralogy and Geochemistry, Mineralogi-cal Society of America, Chantilly, Virginia.

  • Welch, M.D., Cámara, F., and Oberti, R. (2011) Thermoelasticity and high-T behaviour of anthophyllite. Physics and Chemistry of Minerals, 38, 321-334.Google Scholar

  • Withers, A.C., Zhang, Y., and Behrens, H. (1999) Reconciliation of experimental results on H2O speciation in rhyolitic glass using in situ and quenching techniques. Earth and Planetary Science Letters, 173, 343-349.Google Scholar

  • Yamagishi, H., Nakashima, S., and Ito, Y. (1997) High temperature infrared spectra of hydrous microcrystalline quartz. Physics and Chemistry of Minerals, 24, 66-74.Google Scholar

  • Zema, M., Welch, M.D., and Oberti, R. (2012) High-T behaviour of gedrite: Thermoelasticity and dehydrogenation. Contributions to Mineralogy and Petrology, 163, 923-937.Google Scholar

  • Zhang, M., Wang, L., Hirai, S., Redfern, S.A.T., and Salje, E.K.H. (2005) Dehy-droxylation and CO2 incorporation in annealed mica (sericite): An infrared spectroscopic study. American Mineralogist, 90, 173-180.Google Scholar

  • Zhang, M., Qun Hui, Xiao-Jie Lou, Redfern, S.A.T., Salje, E.K.H., Tarantino, S. (2006) Dehydroxylation, proton migration and structural changes in heated talc: An infrared spectroscopic study. American Mineralogist, 91, 816-825.Google Scholar

  • Zhang, M., Salje, E.K.H., Carpenter, M.A., Wang, J.Y., Groat, L.A., Lager, G.A., Wang, L., Beran, A., and Bismayer, U. (2007) Temperature dependence of IR absorption of hydrous/hydroxyl species in minerals and synthetic materials. American Mineralogist, 92, 1502-1517.Google Scholar

  • Zhang, M., Redfern, S.A.T., Salje, E.K.H., Carpenter, M.A., and Hayward, C.L. (2010) Thermal behaviour of vibrational phonons and hydroxyls of muscovite in dehydroxylation: In situ high-temperature infrared spectroscopic investigations. American Mineralogist, 95, 1444-1457.Google Scholar

About the article

Received: 2016-05-18

Accepted: 2016-08-24

Published Online: 2017-01-03

Published in Print: 2017-01-01


Citation Information: American Mineralogist, Volume 102, Issue 1, Pages 117–125, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5859.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in