Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 102, Issue 1

Issues

Formation of phosphorus-rich olivine in Dar al Gani 978 carbonaceous chondrite through fluid-assisted metamorphism

Yang Li
  • State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210046, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ai-Cheng Zhang
  • Corresponding author
  • State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210046, China
  • Lunar and Planetary Science Institute, Nanjing University, Nanjing 210046, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jia-Ni Chen
  • State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210046, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Li-Xin Gu / Ru-Cheng Wang
  • State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210046, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-03 | DOI: https://doi.org/10.2138/am-2017-5881

Abstract

Phosphorus-rich olivine (P2O5 > 1 wt%) is a mineral that has been reported only in a few terrestrial and extraterrestrial occurrences. Previous investigations suggest that P-rich olivine mainly forms through rapid crystallization from high-temperature P-rich melts. Here, we report a new occurrence of P-rich olivine in an ungrouped carbonaceous chondrite Dar al Gani (DaG) 978. The P-rich olivine in DaG 978 occurs as lath-shaped grains surrounding low-Ca pyroxene and olivine grains. The lath-shaped olivine shows a large variation in P2O5 (0–5.5 wt%). The P-rich olivine grains occur in a chondrule fragment and is closely associated with chlorapatite, merrillite, FeNi metal, and troilite.Tiny Cr-rich hercynite is present as inclusions within the P-rich olivine. The lath-shaped texture and the association with Cr-rich hercynite indicates that the P-rich olivine in DaG 978 formed by replacing low-Ca pyroxene precursor by a P-rich fluid during a thermal event, rather than by crystallization from a high-temperature melt. The large variation of P2O5 within olivine grains on micrometer-scale indicates a disequilibrium formation process of the P-rich olivine. The occurrence of P-rich olivine in DaG 978 reveals a new formation mechanism of P-rich olivine.

Keywords: Phosphorus-rich olivine; fluid-assisted metamorphism; Dar al Gani 978; carbonaceous chondrite

References cited

  • Agrell, S.O., Charnley, N.R., and Chinner, G.A. (1998) Phosphoran olivine from Pine Canyon, Piute Co., Utah. Mineralogical Magazine, 62, 265–269.Google Scholar

  • Anderson, A.T., and Greenland, L.P. (1969) Phosphorus fractionation diagram as a quantitative indicator of crystallization differentiation of basaltic liquids. Geochimica et Cosmochimica Acta, 33, 493–505.Google Scholar

  • Boesenberg, J.S., and Hewins, R.H. (2010) An experimental investigation into the metastable formation of phosphoran olivine and pyroxene. Geochimica et Cosmochimica Acta, 74, 1923–1941.Google Scholar

  • Brearley, A.J. and Krot, A.N. (2013) Metasomatism in the early solar system: the record from chondritic meteorites. In Harlov D. E. and Austrheim H. Berlin, Eds., Metasomatism and the chemical transformation of rock, Lecture notes in Earth System Sciences. Springer-Verlag. pp. 659–789.Google Scholar

  • Brunet, F., and Chazot, G. (2001) Partitioning of phosphorus between olivine, clinopyroxene and silicate glass in a spinel lherzolite xenolith from Yemen. Chemical Geology, 176, 51–72.Google Scholar

  • Buseck, P.R. (1977) Pallasite meteorites—Mineralogy, petrology and geochemistry. Geochimica et Cosmochimica Acta, 41, 711–740.Google Scholar

  • Buseck, P.R., and Clark, J. (1984) Zaisho—A pallasite containing pyroxene and phosphoran olivine. Mineralogical Magazine, 48, 229–235.Google Scholar

  • Choe, W.H., Huber, H., Rubin, A.E., Kallemeyn, G.W., and Wasson, J.T. (2010) Compositions and taxonomy of 15 unusual carbonaceous chondrites. Meteoritics and Planetary Science, 45, 531–554.Google Scholar

  • Fowler-Gerace, N.A., and Tait, K.T. (2015) Phosphoran olivine overgrowth: Implications for multiple impacts to the Main Group pallasite parent body. American Mineralogist, 100, 2043–2052.Google Scholar

  • Goodrich, C.A. (1984) Phosphoran pyroxene and olivine in silicate inclusions in natural iron-carbon alloy, Disko Island, Greenland. Geochimica et Cosmochimica Acta, 48, 2769–2771.Google Scholar

  • Hsu, W., Guan, Y., Hua, X., Wang, Y., Leshin, L.A., and Sharp, T.G. (2006) Aqueous alteration of opaque assemblages in the Ningqiang carbonaceous chondrite: Evidence from oxygen isotopes. Earth and Planetary Science Letters, 243, 107–144.Google Scholar

  • Jones, R.H. (1990) Petrology and mineralogy of type II, FeO-rich chondrules in Semarkona (LL3.0): Origin by closed-system fractional crystallization, with evidence for supercooling. Geochimica et Cosmochimica Acta, 54, 1785–1802.Google Scholar

  • Jones, R.H., and Rubie, D.C. (1993) Thermal histories of CO3 chondrites: Application of olivine diffusion modelling to parent body metamorphism. Earth and Planetary Science Letters, 106, 73–86.Google Scholar

  • Klein-BenDavid, O., Pettke, T., and Kessel, R. (2011) Chromium mobility in hydrous fluids at upper mantle conditions. Lithos, 125, 122–130.Google Scholar

  • Krot, A.N., Petaev, M.I., and Bland, P.A. (2004) Multiple formation mechanisms of ferrous olivine in CV3 carbonaceous chondrites during fluid-assisted metamorphism. Antarctic Meteorite Research, 17, 154–172.Google Scholar

  • McCanta, M.C., Beckett, J.R., and Stolper, E.M. (2016) Correlations and zoning patterns of phosphorus and chromium in olivine from H chondrites and the LL chondrite Semarkona. Meteoritics and Planetary Science, 51, 520–546.Google Scholar

  • Milman-Barris, M.S., Beckett, J.R., Baker, M.B., Hofmann, A.E., Morgan, Z., Crowley, M.R., Vielzeuf, D., and Stolper, E. (2008) Zoning of phosphorus in igneous olivine. Contributions to Mineralogy and Petrology, 155, 739–765.Google Scholar

  • Roeder, P.L., and Reynolds, I. (1991) Crystallization of chromite and chromium solubility in basaltic melts. Journal of Petrology, 32, 909–934.Google Scholar

  • Russell, S.S., Zipfel, J., Folco, L., Jones, R., Grady, M.M., McCoy, T., and Grossman, J.N. (2003) The Meteoritical Bulletin, No. 87. Meteoritics and Planetary Science, 38, A189–A248.Google Scholar

  • Schneider, P., Tropper, P., and Kaindl, R. (2013) The formation of phosphoran olivine and stanfieldite from the pyrometamorphic breakdown of apatite in slags from a prehistoric ritual immolation site (Goldbichl, Igls, Tyrol, Austria). Mineralogy and Petrology, 107, 327–340.Google Scholar

  • Sonzogni, Y., Devouard, B., Provost, A., and Devidal, J.-L. (2009) Olivine-hosted melt inclusions in the Brahin pallasite. In Meteoritics and Planetary Science Supplement, p. 5070, 72nd Annual Meeting of the Meteoritical Society, Nancy, France.Google Scholar

  • Tropper, P., Recheis, A., and Konzett, J. (2004) Pyrometamorphic formation of phosphorus-rich olivines in partially molten metapelitic gneisses from a prehistoric sacrificial burning site (Ötz Valley, Tyrol, Austria). European Journal of Mineralogy, 16, 631–640.Google Scholar

  • Wang, Y., Hua, X., and Hsu, W. (2007) Petrogenesis of opaque assemblages in the Ningqiang carbonaceous chondrite. Science in China Series D: Earth Sciences, 50, 886–896.Google Scholar

  • Wasson, J.T., Lange, D.E., and Francis, C.A. (1999) Massive chromite in the Brenham pallasite and the fractionation of Cr during the crystallization of asteroidal cores. Geochimica et Cosmochimica Acta, 63, 1219–1232.Google Scholar

  • Watenphul, A., Schmidt, C., and Jahn, S. (2014) Cr(III) solubility in aqueous fluids at high pressures and temperatures. Geochimica et Cosmochimica Acta, 126, 212–227.Google Scholar

  • Watson, E.B., Cherniak, D.J., and Holycross, M.E. (2015) Diffusion of phosphorus in olivine and molten basalt. American Mineralogist, 100, 2053–2065.Google Scholar

  • Zanda, B., Bourot-Denise, M., Perron, C., and Hewins, R.H. (1994) Origin and metamorphic redistribution of silicon, chromium, and phosphorus in the metal of chondrites. Science, 265, 1846–1849.Google Scholar

  • Zhang, A.C., and Yurimoto, H. (2013) Petrography and mineralogy of the ungrouped type 3 carbonaceous chondrite Dar al Gani 978. Meteoritics and Planetary Science, 48, 1651–1677.Google Scholar

  • Zhang, A.C., Itoh, S., Sakamoto, N., Wang, R.C., and Yurimoto, H. (2014) Origins of Al-rich chondrules: Clues from a compound Al-rich chondrule in the Dar al Gani 978 carbonaceous chondrite. Geochimica et Cosmochimica Acta, 130, 78–92.Google Scholar

  • Zhang, A.C., Li, Q.L., Yurimoto, H., Sakamoto, N., Li, X.H., Hu, S., Lin, Y.T., and Wang, R.C. (2016) Young asteroidal fluid activity revealed by absolute age from apatite in carbonaceous chondrite. Nature Communications, 7, 12844, .CrossrefGoogle Scholar

About the article

Received: 2016-06-12

Accepted: 2016-08-24

Published Online: 2017-01-03

Published in Print: 2017-01-01


Citation Information: American Mineralogist, Volume 102, Issue 1, Pages 98–107, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5881.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in