Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2017: 2.645

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 102, Issue 1

Issues

Raman and IR studies of the effect of Fe substitution in hydroxyapatites and deuterated hydroxyapatite

Anastasios Antonakos / Efthymios Liarokapis / Andreas Kyriacou
  • Physics Department, Florida Atlantic University, Boca Raton, Florida 33431, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Theodora Leventouri
  • Physics Department, Florida Atlantic University, Boca Raton, Florida 33431, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-03 | DOI: https://doi.org/10.2138/am-2017-5884

Abstract

We have studied synthetic Fe-substituted hydroxyapatite Ca5-xFex(PO4)3OH and the corresponding deuterated samples with varying Fe concentrations x (0 ≤ x ≤ 0.3) by Raman and IR spectroscopy at room temperature. In the IR spectra, substitution of deuterons for protons affects the OH internal mode in a way consistent with the mass difference of the substituting ions, as well as a mode attributed to vibrations of the Ca3-(OH) unit. In the Raman spectra, the frequency of all modes is not noticeably affected by the Fe substitution. Raman bands show increased width and substantial reduction in intensity with increasing amount of Fe, presumably related to disorder introduced by the substitution. We find that the disorder is smaller in the hydroxyapatites compared to the deuterated ones.

Keywords: Hydroxyapatites; Fe-substitution; Raman spectroscopy; FTIR

References cited

  • Antonakos, A., Liarokapis, E., and Leventouri, T. (2007) Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials, 28, 3043–3054.Google Scholar

  • Calderin, L., Dunfield, D., and Stott, M. (2005) Shell-model study of the lattice dynamics of hydroxyapatite. Physical Review B, 72, 224304.Google Scholar

  • Cant, N.W., Bett, J.A.S., Wilson, G.R., and Hall, W.K. (1971) The vibrational spectrum of hydroxyl groups in hydroxyapatites. Spectrochimica Acta, 27A, 425–439.Google Scholar

  • Corno, M., Busco, C., Civalleri, B., and Ugliengo, P. (2006) Periodic ab initio study of structural and vibrational features of hexagonal hydroxyapatite Ca10(PO4)6(OH)2. Physical Chemistry Chemical Physics, 8, 2464–2472.Google Scholar

  • de Faria, D.L.A., Venancio Silva, S., and de Oliveira, M.T. (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. Journal of Raman Spectroscopy, 28, 873–878.Google Scholar

  • De Vernejoul, M.C., Pointillart, A., Golenzer, C.C., Morieux, C., Bielakoff, J., Modrowski, D., and Miravet, L. (1984), Effects of iron overload on bone remodeling in pigs. American Journal of Pathology, 116, 377–384.Google Scholar

  • Elliott, J.C. (1994) Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Elsevier.Google Scholar

  • Jiang, M., Terra, J., Rossi, A.M., Morales, M.A., Baggio Saitovich, E.M., and Ellis, D.E. (2002) Fe2+/Fe3+ substitution in hydroapatite: Theory and experiment. Physical Review B, 66, 224107.Google Scholar

  • Khudolozhkin, B.O., Urusov, V.S., and Kurash, V.V. (1974) Mössbauer study of the ordering of Fe2+ in fluor-apatite structure. Geochemistry International, 11, 748–750.Google Scholar

  • Kyriacou, A., Leventouri, Th., Chakoumakos, B.C., Garlea, V.O., dela Cruz, C.B., Rondinone, A.J., and Sorge, K.D. (2013) Combined X-ray and neutron diffraction Rietveld refinement in iron-substituted nano-hydroxyapatite. Journal Materials Science, 48, 3535–3545, .CrossrefGoogle Scholar

  • Leventouri, T., Bunaciu, C.E., and Perdikatsis, V. (2003) Neutron powder diffraction studies of silicon-substituted hydroxyapatite. Biomaterials, 24, 4205–4211.Google Scholar

  • Li, Y., Widodo, J., Lim, S., and Ooi, C.P. (2012) Synthesis and cytocompatibility of manganese (II) and iron (III) substituted hydroapatite nanoparticles. Journal Materials Science, 47, 754–763.Google Scholar

  • Low, H.R., Phothammachai, N., Maignan, A., Stewart, G.A., Bastow, T.J., Ma, L.L., and White, T.J. (2008) The crystal chemistry of ferric oxyhydroapatite.Inorganic Chemistry, 47, 11774–11782.Google Scholar

  • Martin, T.P., Merlin, R., Huffman, D.R., and Cardona, M. (1977) Resonant two magon Raman scattering in Fe2O3. Solid State Communications, 22, 565–567.Google Scholar

  • Massey, M.J., Baier, U., Merlin, R., and Weber, W.H. (1990) Effects of pressure and isotopic substitution on the raman spectrum of a-Fe2O3: Identification of two-magnon scattering. Physical Review B, 41, 7822–7827.Google Scholar

  • McCarty, K.F. (1988) Inelastic scattering in a-Fe2O3: Phonon vs magon scattering. Solid State Communications, 68, 799–802.Google Scholar

  • Medeiros, D.M., Plattner, A., Jennings, D., and Stoecker, B. (2002) Bone morphology, strength and density are compromised in iron-deficient rats and exacerbated by calcium restriction. Journal of Nutrition, 132, 3135–3141.Google Scholar

  • Morissay, R., Rodriguez-Lorenzo, L.M., and Gross, K.A. (2005) Influence of ferrous iron incorporation on the structure of hydroapatite. Journal Materials Science: Materials in Medicine, 16, 387–392.Google Scholar

  • Okazaki, M., and Takahashi, J. (1997) Heterogeneous iron-containing fluoridated apatites. Biomaterials, 18, 11–14.Google Scholar

  • Park, E., Condrate, R.A. Sr., Lee, D., Kociba, K., Gallagher, P.K. (2002) Characterization of hydroxyapatite: before and after plasma spraying. Journal Materials Science; Materials in Medicine, 13, 211–218.Google Scholar

  • Pedone, A., Corno, M., Civalleri, B., Malavasi, G., Menziani, M.C., Segre, U., and Ugliero, P. (2007) An ab initio parametrization interatomic force field for hydroxyapatite. Journal of Materials Chemistry, 17, 2061–2068.Google Scholar

  • Penel, G., Leroy, P.G., Rey, C., and Bres, E. (1998) Micro-Raman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcified Tissue International, 63, 475–481.Google Scholar

  • Salviulo, G., Bettinelli, M., Russo, U., Speghini, A., and Nodari, L. (2011) Synthesis and structural characterization of Fe3+-doped calcium hydroxyapatite: role of precursors and synthesis method. Journal Materials Science, 46, 910–922.Google Scholar

  • Shim, S.H., and Duffy, T.S. (2001) Raman spectroscopy of Fe2O3 to 62 GPa. American Mineralogist, 87, 318–326.Google Scholar

  • Srivastava, G.P. (1990) The Physics of Phonons. Taylor and Francis.Google Scholar

  • Ulian, G., Valdrè, G., Corno, M., and Ugliero, P. (2013) The vibrational features of hydroxyapatite and type A carbonated apatite: A first principle contribution. American Mineralogist, 98, 752–759.Google Scholar

  • Vignoles-Montrejaud, M. (1984) Contibution a L’etude des Apatites Carbonate es de Type B. These d’Etat, Institut National Polytechnique de Toulouse.Google Scholar

  • Wang, J., White, W.B., and Adair, J.H. (2005) Optical properties of hydrothermally synthesized hematite particulate pigments. Journal of the American Ceramic Society, 88, 3449–3454.Google Scholar

  • Wopenka, B., and Pasteris, J.D. (2005) A mineralogical perspective on the apatite bone. Materials Science and Engineering C, 25, 131–143.Google Scholar

  • Wu, H.C., Wang, T.W., Sun, J.S., Wang, W.H., and Lin, F.H. (2007) A novel biomagnetic nanoparticle based on hydroapatite. Nanotechnology, 18, 165601–165609.Google Scholar

About the article

Received: 2016-06-17

Accepted: 2016-08-29

Published Online: 2017-01-03

Published in Print: 2017-01-01


Citation Information: American Mineralogist, Volume 102, Issue 1, Pages 85–91, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5884.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in