Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2017: 2.645

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 102, Issue 1


Bridgmanite-like crystal structure in the novel Ti-rich phase synthesized at transition zone condition

Luca Bindi
  • Corresponding author
  • Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, I-50121 Firenze, Italy
  • CNR–Istituto di Geoscienze e Georisorse, sezione di Firenze, Via La Pira 4, I-50121 Firenze, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ekaterina Sirotkina
  • Geological Faculty, Moscow State University, Leninskie Gory, 119234, Moscow, Russia
  • Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, 119991Moscow, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrey V. Bobrov
  • Geological Faculty, Moscow State University, Leninskie Gory, 119234, Moscow, Russia
  • Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, 119991Moscow, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael J. Walter / Dmitry Pushcharovsvsky / Tetsuo Irifune
  • Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan
  • Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-03 | DOI: https://doi.org/10.2138/am-2017-5937


A new Ti-bearing bridgmanite-like phase with a threefold commensurate superstructure of the ideal MgSiO3-perovskite structure was observed in a [Mg5/6Al1/6][Si1/2Ti1/3Al1/6]O3 crystal synthesized in the model system Mg3Al2Si3O12–MgTiO3 at 20 GPa and 1600 °C. The compound was found to be orthorhombic, space group Pnma, with lattice parameters a = 14.767(3), b = 6.958(1), c = 4.812(1) Å, V = 494.4(2) Å3, which represents a 3a × b × c superstructure of the typical Pnma perovskite structure. The structure was refined to R = 0.024 using 846 independent reflections. The superstructure mainly arises from the ordering of titanium in one of the octahedral positions. Crystal-chemical details of the different polyhedra in the superstructure are discussed in comparison to pure MgSiO3. This is the first documented superstructure of a bridgmanite phase, and Ti-rich bridgmanite in the lower mantle arising from local Tienrichments may exhibit different physical properties and elemental partitioning behavior from Ti-poor, peridotitic bridgmanite. The study also shows that large amounts of Ti can stabilize bridgmanite-like compounds at considerably lower pressure than lower mantle conditions.

Keywords: Bridgmanite; titanium; lower mantle; crystal structure; microprobe analysis; synthesis

References cited

  • Albee, A.L., and Ray, L. (1970) Correction factors for electron probe analysis of silicate, oxides, carbonates, phosphates, and sulfates. Analytical Chemistry, 48, 1408–1414.Google Scholar

  • Armstrong, L.S., Walter, M.J., Tuff, J.R., Lord, O.T., Lennie, A.R., Kleppe, A.K., and Clarke, S.M. (2012) Perovskite phase relations in the system CaO-MgO-TiO2-SiO2 and implications for deep mantle lithologies. Journal of Petrology, 53, 611–635.Google Scholar

  • Audetat, A., and Keppler, H. (2005) Solubility of rutile in subduction zone fluids, as determined by experiments in the hydrothermal diamond anvil cell. Earth and Planetary Science Letters, 232, 393–402.Google Scholar

  • Bence, A.E., and Albee, A.L. (1968) Empirical correction factors for the electron microanalysis of silicate and oxides. Journal of Geology, 76, 382–403.Google Scholar

  • Bindi, L., Sirotkina, E.A., Bobrov, A.V., and Irifune, T. (2014) Chromium solubility in perovskite at high pressure: The structure of (Mg1−xCrx)(Si1−xCrx)O3 (with x = 0.07) synthesized at 23 GPa and 1600°C. American Mineralogist, 99, 866–869.Google Scholar

  • Brenker, F.E., Vincze, L., Vekemans, B., Nasdala, L., Stachel, T., Vollmer, C., Kersten, M., Somogyif, A., Adams, F., Joswig, W., and Harris, J.W. (2005) Detection of a Ca-rich lithology in the Earth’s deep (300 km) convecting mantle. Earth and Planetary Science Letters, 236, 579–587.Google Scholar

  • Brese, N.E., and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192–197.Google Scholar

  • Dobson, D.P., and Jacobsen, S.D. (2004) The flux growth of magnesium silicate perovskite single crystals. American Mineralogist, 89, 807–811.Google Scholar

  • Harte, B. (2010) Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineralogical Magazine, 74, 189–215.Google Scholar

  • Hill, R.J., Newton, M.D., and Gibbs, G.V. (1983) A crystal chemical study of stishovite. Journal of Solid State Chemistry, 47, 185–200.Google Scholar

  • Ibers, J.A., and Hamilton, W.C., Eds. (1974) International Tables for X-ray Crystallography, vol. IV, 366 p. Kynock, Dordrecht, The Netherlands.Google Scholar

  • Irifune, T., Kurio, A., Sakamoto, S., Inoue, T., Sumiya. H., and Funakoshi, K. (2004) Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature. Physics of the Earth and Planetary Interiors, 143-144, 593–600.Google Scholar

  • Katsura, T., and Ito, E. (1989) The system Mg2SiO4-Fe2SiO4 at high pressure and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel. Journal of Geophysical Research, 94, 15663–15670.Google Scholar

  • Kojitani, H., Katsura, T., and Akaogi, M. (2007) Aluminum substitution mechanisms in perovskite-type MgSiO3: an investigation by Rietveld analysis. Physics and Chemistry of Minerals, 34, 257–267.Google Scholar

  • Kubo, A., and Akaogi, M. (2000) Post-garnet transitions in the system Mg4Si4O12 −Mg3Al2Si3O12 up to 28 GPa: phase relations of garnet, ilmenite and perovskite. Physics of the Earth and Planetary Interiors, 121, 85–102.Google Scholar

  • Kubo, A. Suzuki, T., and Akaogi, M. (1997) High pressure phase equilibria in the system CaTiO3-CaSiO3: stability of perovskite solid solutions. Physics and Chemistry of Minerals, 24, 488–494.Google Scholar

  • Liebske, C., Corgne, A., Frost, D.J., Rubie, D.C., and Wood, B.J. (2005) Compositional effects on element partitioning between Mg-silicate perovskite and silicate melts. Contributions to Mineralogy and Petrology, 149, 113–128.Google Scholar

  • McDonough, W.F., and Sun, S.-S. (1995) The compositoon of the Earth. Chemical Geology, 120, 223–253.Google Scholar

  • O’Keeffe, M., Hyde, B.G., and Bovin, J.O. (1979) Contribution to the crystal chemistry of orthorhombic perovskite: MgSiO3 and NaMgF3. Physics and Chemistry of Minerals, 4, 299–305.Google Scholar

  • Oxford Diffraction (2006) CrysAlis RED (ver. and ABSPACK in CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England.Google Scholar

  • Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567–570.Google Scholar

  • Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.Google Scholar

  • Sinmyo, R., Bykova, E., McCammon, C., Kupenko, I., Potapkin, V., and Dubrovinsky, L. (2014) Crystal chemistry of Fe3+-bearing (Mg,Fe)SiO3 perovskite: a singlecrystal X-ray diffraction study. Physics and Chemistry of Minerals, 41, 409–417.Google Scholar

  • Sirotkina, E.A., Bobrov, A.V., Bindi, L., and Irifune, T. (2015) Phase relations and formation of chromium-rich phases in the system Mg4Si4O12–Mg3Cr2Si3O12 at 10–24 GPa and 1,600 °C. Contributions to Mineralogy and Petrology, 169, 2, .CrossrefGoogle Scholar

  • Swope, R.J., Smyth, J.R., and Larson, A.C. (1995) H in rutile-type compounds: I. Single-crystal neutron and X-ray diffraction study of H in rutile. American Mineralogist, 80, 448–453.Google Scholar

  • Thomas, N.W. (1996) The compositional dependence of octahedral tilting in orthorhombic and tetragonal perovskites. Acta Crystallographica, B52, 16–31.Google Scholar

  • Thomson, A.R., Kohn, S.C., Bulanova, G.P., Smith, C.B., Araujo, D., EIMF, and Walter, M.J. (2014) Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): constraints from carbon isotopes and inclusion compositions. Contributions to Mineralogy and Petrology, 168, 1081.Google Scholar

  • Thomson, A.R., Walter, M.J., Kohn, S.C., and Brooker, R.A. (2016) Slab melting as a barrier to deep carbon subduction. Nature, 529, 76–79.Google Scholar

  • Tropper, P., and Manning, C.E. (2005) Very low solubility of rutile in H2O at high pressure and temperature, and its implications for Ti mobility in subduction zones. American Mineralogist, 90, 502–505.Google Scholar

  • Tschauner, O., Ma, C., Beckett, J.R., Prescher, C., Prakapenka, V., and Rossman, G.R. (2014) Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science, 346, 1100–1102.Google Scholar

  • Walter, M.J., Kubo, A., Yoshino, T., Brodholt, J., Koga, K.T., and Ohishi, Y. (2004) Phase relations and equation-of-state of aluminous Mg-Silicate perovskite and implications for Earth’s lower mantle. Earth and Planetary Science Letters, 222, 501–516.Google Scholar

  • Walter, M.J., Bulanova, G.P., Armstrong, L.S., Keshav, S., Blundy, J.D., Gudfinnsson, G., Lord, O.T., Lennie, A.R., Clark, S.M., Smith, C.B., and Gobbo, L. (2008) Primary carbonatite melt from deeply subducted oceanic crust. Nature, 454, 622–625.Google Scholar

  • Walter, M.J., Kohn, S.C., Araujo, D., Bulanova, G.P., Smith, C.B., Gaillou, E., Wang, J., Steele, A., and Shirey, S.B. (2011) Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science, 334, 54–57.Google Scholar

  • Wilson, M. (1989) Igneous Petrogenesis—A global tectonic approach, 466 p. Kluwer, Dordrecht.Google Scholar

  • Yamada, A., Inoue, T., and Irifune, T. (2004) Melting of enstatite from 13 to 18 GPa under hydrous conditions. Physics of the Earth and Planetary Interiors, 147, 45–56.Google Scholar

  • Yamanaka, T., Hirai, M., and Komatsu, Y. (2002) Structure change of Ca1−xSrx TiO3 perovskite with composition and pressure. American Mineralogist, 87, 1183–1189.Google Scholar

  • Zedgenizov, D.A., Shatsky, V.S., Panin, A.V., Evtushenko, O.V., Ragozin, A.L., and Kagi, H. (2015) Evidence for phase transitions in mineral inclusions in superdeep diamonds of the São Luiz deposit (Brazil). Russian Geology and Geophysics, 56, 296–305.Google Scholar

About the article

Received: 2016-08-19

Accepted: 2016-11-13

Published Online: 2017-01-03

Published in Print: 2017-01-01

Citation Information: American Mineralogist, Volume 102, Issue 1, Pages 227–231, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-5937.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in