Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 102, Issue 10


Spin state and electronic environment of iron in basaltic glass in the lower mantle

Fumiya Maeda
  • Corresponding author
  • Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Seiji Kamada
  • Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
  • Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8578, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eiji Ohtani
  • Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Naohisa Hirao / Takaya Mitsui
  • Synchrotron Radiation Research Center, Kansai Photon Science Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Hyogo, 679-5148, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ryo Masuda / Masaaki Miyahara
  • Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Hiroshima, 739-8526, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Catherine McCammon
Published Online: 2017-10-02 | DOI: https://doi.org/10.2138/am-2017-6035


The spin states of iron in deep magmas are one of the most important properties that affect the partitioning of iron between magmas and minerals and, thus, the gravitational stability of magmas in the Earth. We investigated the spin state and electronic environments of iron in a basaltic glass containing ~70 Fe3+/ΣFe at room temperature and pressures from 1 bar to 130 GPa using a diamond-anvil cell combined with energy domain synchrotron 57Fe Mössbauer source spectroscopy. The basaltic glass represents an analog of a multi-component magma typical for the Earth. The Mössbauer spectra could be fitted by a two pseudo-Voigt doublet model including a high quadrupole splitting (QS) doublet and a low QS doublet, which were assigned to high-spin Fe2+ and high-spin Fe3+, respectively. The high-spin states of Fe2+ and Fe3+ remained up to 130 GPa corresponding to the pressure in the lowermost mantle. The center shift values of high-spin Fe2+ and Fe3+ did not show large changes with pressure, ruling out sharp electronic changes in the basaltic glass. Therefore, a sharp and complete spin crossover of Fe2+ from the high-spin to the low-spin state does not appear to occur in the basaltic glass although the possibility of a partial spin transition cannot be fully excluded. The QS values of Fe2+ increased slightly at 0–20 GPa and above 100 GPa, and the higher value was preserved after decompression to ambient conditions. This behavior may be related to distortion of Fe2+ polyhedra due to short-range ordering on compression. Such a distortion of Fe2+ polyhedra could gradually stabilize Fe2+ in the basaltic glass with pressure compared to bridgmanite according to the Jahn-Teller effect, and thus could gradually enhance the partitioning of iron into deep magmas in the lower mantle.

Keywords: Silicate glass; deep magma; spin transition; lower mantle; Synchrotron Mössbauer spectroscopy; diamond-anvil cell

References cited

  • Agee, C.B., and Walker, D. (1993) Olivine flotation in mantle melt. Earth and Planetary Science Letters, 90, 144–156.Google Scholar

  • Alberto, H.V., Pinto da Cunha, J.L., Mysen, B.O., Gil, J.M., and Ayres de Campos, N. (1996) Analysis of Mössbauer spectra of silicate glasses using a two-dimensional Gaussian distribution of hyperfine parameters. Journal of Non-Crystalline Solids, 194, 48–57.Google Scholar

  • Akahama, Y., and Kawamura, H. (2004) High-pressure Raman spectroscopy of diamond anvils to 250 GPa: Method for pressure determination in the multimegabar pressure range. Journal of Applied Physics, 96, 3748–3751.Google Scholar

  • Amthauer, G., and Rossman, G.R. (1984) Mixed valence of iron in minerals with cation clusters. Physics and Chemistry of Minerals, 11, 37–51.Google Scholar

  • Andrault, D., Petitgirard, S., Nigro, G.L., Devidal, J.-L., Veronesi, G., Garbarino, G., and Mezouar, M. (2012) Solid–liquid iron partitioning in Earth’s deep mantle. Nature, 487, 354–357.Google Scholar

  • Andrault, D., Pesce, G., Bouhifd, M.A., Bolfan-Casanova, N., Hénot, J.-M., and Mezouar, M. (2014) Melting of subducted basalt at the core-mantle boundary. Science, 344, 892–895.Google Scholar

  • Bajgain, S., Ghosh, D.B., and Karki, B.B. (2015) Structure and density of basaltic melts at mantle conditions from first-principles simulations. Nature Communications, 6, 8578, .CrossrefGoogle Scholar

  • Berryman, J.G. (2000) Seismic velocity decrement ratios for regions of partial melts in the lower mantle. Geophysical Research Letters, 27, 421–424.Google Scholar

  • Burns, R.G. (1993) Mineralogical Applications of Crystal Field Theory, 32–39 pp. Cambridge University Press, U.K.Google Scholar

  • Dyar, M.D. (1985) A review of Mössbauer data on inorganic glasses: the effects of composition on iron valency and coordination. American Mineralogist, 70, 304–316.Google Scholar

  • Fei, Y., Virgo, D., Mysen, B.O., Wang, Y., and Mao, H.K. (1994) Temperature-dependent electron delocalization in (Mg,Fe)SiO3 perovskite. American Mineralogist, 79, 826–837.Google Scholar

  • Frost, D.J., Liebske, C., Langenhorst, F., McCammon, C.A., Trønnes, R.G., and Rubie, D. (2004) Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature, 428, 409–412.Google Scholar

  • Fujino, K., Nishio-Hamane, D., Nagai, T., Seto, Y., Kuwayama, Y., Whitaker, M., Ohfuji, H., Shinmei, T., and Irifune, T. (2014) Spin transition, substitution, and partitioning of iron in lower mantle minerals. Physics of the Earth and Planetary Interiors, 228, 186–191.Google Scholar

  • Gu, C., Catalli, K., Grocholski, B., Gao, L., Alp, E., Chow, P., Xiao, Y., Cynn, H., Evans, W.J., and Shim, S.-H. (2012) Electronic structure of iron in magnesium silicate glasses at high pressure. Geophysical Research Letters, 39, L24304.Google Scholar

  • Kantor, I., Dubrovinsky, L., McCammon, C., Steinle-Neumann, G., and Kantor, A. (2009) Short-range order and Fe-clustering in Mg1–xFexO under high pressure. Physical Review B, 80, 14204.Google Scholar

  • Kawakatsu, H., Kumar, P., Takei, Y., Shinohara, M., Kanazawa, T., Araki, E., and Suyehiro, K. (2009) Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates. Science, 324, 499–502.Google Scholar

  • Komabayashi, T., Maruyama, S., and Rino, S. (2009) A speculation on the structure of the D″ layer: The growth of anti-crust at the core-mantle boundary through the subduction history of the Earth. Gondwana Research, 15, 342–353.Google Scholar

  • Kupenko, I., McCammon, C., Sinmyo, R., Cerantola, V., Potapkin, V., Chumakov, A.I., Kantor, A., Rüffer, R., and Dubrovinsky, L. (2015) Oxidation state of the lower mantle: In situ observations of the iron electronic configuration in bridgmanite at extreme conditions. Earth and Planetary Science Letters, 423, 78–86.Google Scholar

  • Lagarec, K., and Rancourt, D.G. (1997) Extended Voigt-based analytic lineshape method for determining N-dimensional correlated hyperfine parameter distributions in Mössbauer spectroscopy. Nuclear Instruments and Methods in Physics Research B, 129, 266–280.Google Scholar

  • Lay, T., Garnero, E.J., and Williams, Q. (2004) Partial melting in a thermo-chemical boundary layer at the base of the mantle. Physics of the Earth and Planetary Interiors, 146, 441–467.Google Scholar

  • Lee, S.K. (2011) Simplicity in melt densification in multicomponent magmatic reservoirs in Earth’s interior revealed by multinuclear magnetic resonance. Proceedings of National Academy of Sciences, 108, 6847–6852.Google Scholar

  • Lee, S.K., Yi, Y.S., Cody, G.D., Mibe, K., Fei, Y., and Mysen, B.O. (2012) Effect of network polymerization on the pressure-induced structural changes in sodium aluminosilicate glasses and melts: 27Al and 17O solid-state NMR study. The Journal of Physical Chemistry C, 116, 2183–2191.Google Scholar

  • Lin, J.F., Alp, E.E., Mao, Z., Inoue, T., McCammon, C., Xiao, Y., Chow, P., and Zhao, J. (2012) Electronic spin state of ferric and ferrous iron in the lower-mantle silicate perovskite. American Mineralogist, 97, 592–597.Google Scholar

  • Mao, Z., Lin, J.F., Yang, J., Wu, J., Watson, H.C., Xiao, Y., Chow, P., and Zhao, J. (2014) Spin and valence state of iron in Al-bearing silicate glass at high pressures studied by synchrotron Mössbauer and X-ray emission spectroscopy. American Mineralogist, 99, 415–423.Google Scholar

  • McCammon, C., Kantor, I., Narygina, O., Rouquette, J., Ponkratz, U., Sergueev, I., Mezouar, M., Prakapenka, V., and Dubrovinsky, L. (2008) Stable intermediate-spin ferrous iron in lower-mantle perovskite. Nature Geoscience, 1, 684–687.Google Scholar

  • McCammon, C., Dubrovinsky, L., Narygina, O., Kantor, I., Wu, X., Glazyrin, K., Sergueev, I., and Chumakov, A.I. (2010) Low-spin Fe2+ in silicate perovskite and a possible layer at the base of the lower mantle. Physics of the Earth and Planetary Interiors, 180, 215–221.Google Scholar

  • Mitsui, T., Hirao, N., Ohishi, Y., Masuda, R., Nakamura, Y., Enoki, H., Sakaki, K., and Seto, M. (2009) Development of an energy-domain 57Fe-Mössbauer spectrometer using synchrotron radiation and its application to ultrahigh-pressure studies with a diamond anvil cell. Journal of Synchrotron Radiation, 16, 723–729.Google Scholar

  • Miyajima, N., Fujino, K., Funamori, N., Kondo, T., and Yagi, T. (1999) Garnet-perovskite transformation under conditions of the Earth’s lower mantle: an analytical transmission electron microscopy study. Physics of the Earth and Planetary Interiors, 116, 117–131.Google Scholar

  • Miyahara, M., Sakai, T., Ohtani, E., Kobayashi, Y., Kamada, S., Kondo, T., Nagase, T., Yoo, J.H., Nishijima, M., and Vashaei, Z. (2008) Application of FIB system to ultra-high-pressure Earth science. Journal of Mineralogical and Petrological Science, 103, 88–93.Google Scholar

  • Morris, E.R., and Williams, Q. (1997) Electrical resistivity of Fe3O4 to 48 GPa: Compression-induced changes in electron hopping at mantle pressures. Journal of Geophysical Research, 102, 18,139–18,148.Google Scholar

  • Murakami, M., and Bass, J.D. (2010) Spectroscopic evidence for ultrahigh-pressure polymorphism in SiO2 glass. Physical Review Letters, 104, 025504.Google Scholar

  • Murakami, M., and Bass, J.D. (2011) Evidence of denser MgSiO3 glass above 133 gigapascal (GPa) and implications for remnants of ultradense silicate melt from a deep magma ocean. Proceedings of the National Academy of Sciences, 108, 17,286–17,289.Google Scholar

  • Murakami, M., Goncharov, A.F., Hirao, N., Masuda, R., Mitsui, T., Thomas, S.M., and Bina, C.R. (2014) High-pressure radiative conductivity of dense silicate glasses with potential implications for dark magmas. Nature Communications, 5, 5428, .CrossrefGoogle Scholar

  • Nomura, R., Ozawa, H., Tateno, S., Hirose, K., Hernlund, J., Muto, S., Ishii, H., and Hiraoka, N. (2011) Spin crossover and iron-rich silicate melt in the Earth’s deep mantle. Nature, 473, 199–202.Google Scholar

  • Ohira, I., Murakami, M., Kohara, S., Ohara, K., and Ohtani, E. (2016) Ultrahigh-pressure acoustic wave velocities of SiO2-Al2O3 glasses up to 200 GPa. Progress in Earth and Planetary Science, 3, 18.Google Scholar

  • Ohtani, E., and Maeda, M. (2001) Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle. Earth and Planetary Science Letters, 193, 69–75.Google Scholar

  • Ohtani, E., Taulelle, F., and Angell, A. (1985) Al3+ coordination changes in liquid aluminosilicates under pressure. Nature, 314, 78–81.Google Scholar

  • Otsuka, K., and Karato, S. (2012) Deep penetration of molten iron into the mantle caused by a morphological instability. Nature, 492, 243–246.Google Scholar

  • Partzsch, G.M., Lattard, D., and McCammon, C. (2004) Mössbauer spectroscopic determination of Fe3+/Fe2+ in synthetic basaltic glass: a test of empirical fO2 equations under superliquidus and subliquidus conditions. Contributions to Mineralogy and Petrology, 147, 565–580.Google Scholar

  • Potapkin, V., Chumakov, A.I., Smirnov, G.V., Celse, J.-P., Ruffer, R., McCammon, C., and Dubrovinsky, L. (2012) The 57Fe synchrotron Mössbauer source at the ESRF. Journal of Synchrotron Radiation, 19, 559–569.Google Scholar

  • Pradhan, G.K., Fiquet, G., Siebert, J., Auzende, A.-L., Morard, G., Antonangeli, D., and Garbarino, G. (2015) Melting of MORB at core–mantle boundary. Earth and Planetary Science Letters, 431, 247–255.Google Scholar

  • Prescher, C., McCammon, C., and Dubrovinsky, L. (2012) MossA: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. Journal of Applied Crystallography, 45, 329–331.Google Scholar

  • Prescher, C., Weigel, C., McCammon, C., Narygina, O., Potapkin, V., Kupenko, I., Sinmyo, R., Chumakov, A.I., and Dubrovinsky, L. (2014) Iron spin state in silicate glass at high pressure: Implications for melts in the Earth’s lower mantle. Earth and Planetary Science Letters, 385, 130–136.Google Scholar

  • Ramo, D.M., and Stixrude, L. (2014) Spin crossover in Fe2SiO4 liquid at high pressure. Geophysical Research Letters, 41, 4512–4518.Google Scholar

  • Rouquette, J., Kantor, I., McCammon, C.A., Dmitriev, V., and Dubrovinsky, L.S. (2008) High-pressure studies of (Mg0.9Fe0.1)2SiO4 olivine using Raman spectroscopy, X-ray diffraction, and Mössbauer spectroscopy. Inorganic Chemistry, 47, 2668–2673.Google Scholar

  • Sakamaki, T., Suzuki, A., Ohtani, E., Terasaki, H., Urakawa, S., Katayama, Y., Funakoshi, K., Wang, Y., Hernlund, J.W., and Ballmer, M.D. (2013) Ponded melt at the boundary between the lithosphere and asthenosphere. Nature Geoscience, 6, 1041–1044.Google Scholar

  • Sanloup, C., Drewitt, J.W.E., Konôpková, Z., Dalladay-Simpson, P., Morton, D.M., Rai, N., van Westrenen, W., and Morgenroth, W. (2013) Structural change in molten basalt at deep mantle conditions. Nature, 503, 104–107.Google Scholar

  • Sato, T., and Funamori, N. (2008) Sixfold-coordinated amorphous polymorph of SiO2 under high pressure. Physical Review Letters, 101, 255502.Google Scholar

  • Sato, T., and Funamori, N. (2010) High-pressure structural transformation of SiO2 glass up to 100 GPa. Physical Review B, 82, 184102.Google Scholar

  • Schmandt, B., Jacobsen, S.D., Becker, T.W., Liu, Z., and Dueker, K.G. (2014) Dehydration melting at the top of the lower mantle. Science, 344, 1265–1268.Google Scholar

  • Schmerr, N. (2012) The Gutenberg discontinuity: Melt at the lithosphere-asthenosphere boundary. Science, 335, 1480–1483.Google Scholar

  • Song, T.R.A., Helmberger, D.V., and Grand, S.P. (2004) Low-velocity zone atop the 410km seismic discontinuity in the northwestern United States. Nature, 427, 530–533.Google Scholar

  • Stolper, E.M., and Ahrens, T.J. (1987) On the nature of pressure-induced coordination changes in silicate melts and glasses. Geophysical Research Letters, 14, 1231–1233.Google Scholar

  • Wakabayashi, D., Funamori, N., Sato, T., and Taniguchi, T. (2011) Compression behavior of densified SiO2 glass. Physical Review B, 84, 144103.Google Scholar

  • Wakabayashi, D., Funamori, N., and Sato, T. (2015) Enhanced plasticity of silica glass at high pressure. Physical Review B, 91, 014106.Google Scholar

  • Williams, Q., and Garnero, E.J. (1996) Seismic evidence for partial melt at the base of Earth’s mantle. Science, 273, 1528–1530.Google Scholar

  • Williams, Q., and Jeanloz, R. (1988) Spectroscopic evidence for pressure-induced coordination changes in silicate glasses and melts. Science, 239, 902–905.Google Scholar

  • Xue, X., Stebbins, J.F., Kanzaki, M., and Trønnes, R.G. (1989) Silicon coordination and speciation changes in a silicate liquid at high pressures. Science, 245, 962–964.Google Scholar

About the article

Received: 2016-11-29

Accepted: 2017-06-23

Published Online: 2017-10-02

Published in Print: 2017-10-26

Citation Information: American Mineralogist, Volume 102, Issue 10, Pages 2106–2112, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-6035.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in