Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian


IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

Online
ISSN
1945-3027
See all formats and pricing
More options …
Volume 102, Issue 10

Issues

The crystal structure of turneaureite, Ca5(AsO4)3Cl, the arsenate analog of chlorapatite, and its relationships with the arsenate apatites johnbaumite and svabite

Cristian Biagioni
  • Corresponding author
  • Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126, Pisa, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ferdinando Bosi
  • Dipartimento di Scienze della Terra, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185, Roma, Italy
  • CNR—Istituto di Geoscienze e Georisorse, UOS Roma, Piazzale Aldo Moro 5, I-00185, Roma, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ulf Hålenius
  • Department of Geosciences, Swedish Museum of Natural History, Box 50007, SE-10405, Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marco Pasero
  • Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126, Pisa, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-02 | DOI: https://doi.org/10.2138/am-2017-6041

Abstract

The crystal structure of turneaureite, ideally Ca5(AsO4)3Cl, was studied using a specimen from the Brattfors mine, Nordmark, Värmland, Sweden, by means of single-crystal X-ray diffraction data. The structure was refined to R1 = 0.017 on the basis of 716 unique reflections with Fo > 4σ(Fo) in the P63/m space group, with unit-cell parameters a = 9.9218(3), c = 6.8638(2) Å, V = 585.16(4) Å3. The chemical composition of the sample, determined by electron-microprobe analysis, is (in wt%; average of 10 spot analyses): SO3 0.22, P2O5 0.20, V2O5 0.01, As2O5 51.76, SiO2 0.06, CaO 41.39, MnO 1.89, SrO 0.12, BaO 0.52, PbO 0.10, Na2O 0.02, F 0.32, Cl 2.56, H2Ocalc 0.58, O(=F+Cl) −0.71, total 99.04. On the basis of 13 anions per formula unit, the empirical formula corresponds to (Ca4.82Mn0.17Ba0.02Sr0.01)Σ5.02(As2.94P0.02S0.02Si0.01)Σ2.99O12[Cl0.47(OH)0.42F0.11]Σ1.00.

Turneaureite is topologically similar to the other members of the apatite supergroup: columns of face-sharing M1 polyhedra running along c are connected through TO4 tetrahedra with channels hosting M2 cations and X anions. Owing to its particular chemical composition, the studied turneaureite can be considered as a ternary calcium arsenate apatite; consequently it has several partially filled anion sites within the anion columns. Polarized single-crystal FTIR spectra of the studied sample indicate stronger hydrogen bonding and less diverse short-range atom arrangements around (OH) groups in turneaureite as compared to the related minerals johnbaumite and svabite. An accurate knowledge of the atomic arrangement of this apatite-remediation mineral represents an improvement in our understanding of minerals able to sequester and stabilize heavy metals such as arsenic in polluted areas.

Keywords: Turneaureite; calcium arsenate; apatite supergroup; crystal structure; infrared spectroscopy; Sweden; Apatite: A common mineral; uncommonly versatile

Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.

References cited

  • Baikie, T., Mercier, P.H.J., Elcombe, M.M., Kim, J.Y., Le Page, Y., Mitchell, L.D., White, T.J., and Whitfield, P.S. (2007) Triclinic apatites. Acta Crystallographica, B63, 251–256.Google Scholar

  • Biagioni, C., and Pasero, M. (2013) The crystal structure of johnbaumite, Ca5(AsO4)3OH, the arsenate analogue of hydroxylapatite. American Mineralogist, 98, 1580–1584.Google Scholar

  • Biagioni, C., Bosi, F., Hålenius, U., and Pasero, M. (2016) The crystal structure of svabite, Ca5(AsO4)3F, an arsenate member of the apatite supergroup. American Mineralogist, 101, 1750–1755.Google Scholar

  • Bosi, F. (2014) Bond valence at mixed occupancy sites. I. Regular polyhedra. Acta Crystallographica, B70, 864–870.Google Scholar

  • Brese, N.E., and O’Keeffe, M. (1991) Bond-valence parameters for anion-anion bonds in solids. Acta Crystallographica, B48, 152–154.Google Scholar

  • Brown, I.D. (2016) The chemical bond in inorganic chemistry: the bond valence model. Series: International Union of Crystallography Monographs on Crystallography, 12, 352 pp. Oxford University Press, U.K.Google Scholar

  • Bruker AXS Inc. (2004) APEX 2. Bruker Advanced X-ray Solutions. Madison, Wisconsin.Google Scholar

  • Chakhmouradian, A.R., and Medici, L. (2006) Clinohydroxylapatite: a new apatite-group mineral from northwestern Ontario (Canada), and new data on the extent of Na-S substitution in natural apatites. European Journal of Mineralogy, 18, 105–112.Google Scholar

  • Charlet, L., and Polya, D.A. (2006) Arsenic in shallow, reducing groundwaters in Southern Asia: an environmental health disaster. Elements, 2, 91–96.Google Scholar

  • Dai, Y.S., and Harlow, G.E. (1991) Structural relationships of arsenate apatites with their anion-devoid intermetallic phase Ca5As3. Geological Society of America Annual Meeting, Program and Abstracts, 23, A219.Google Scholar

  • Dunn, P.J., Petersen, E.U., and Peacor, D.R. (1985) Turneaureite, a new member of the apatite group from Franklin, New Jersey, Balmat, New York and Långban, Sweden. Canadian Mineralogist, 23, 251–254.Google Scholar

  • Henderson, C.M.B., Bell, A.M.T., Charnock, J.M., Knight, K.S., Wendlandt, R.F., Plant, D.A., and Harrison, W.J. (2009) Synchrotron X-ray absorption spectroscopy and X-ray powder diffraction studies of the structure of johnbaumite [Ca10(AsO4)6(OH,F)2] and synthetic Pb-, Sr- and Ba-arsenate apatites and some comments on the crystal chemistry of the apatite structure type in general. Mineralogical Magazine, 73, 433–455.Google Scholar

  • Hughes, J.M. (2015) The many facets of apatite. American Mineralogist, 100, 1033–1039.Google Scholar

  • Hughes, J.M., Cameron, M., and Crowley, K.D. (1989) Structural variation in natural F, OH, and Cl apatites. American Mineralogist, 74, 870–876.Google Scholar

  • Hughes, J.M., Cameron, M., and Crowley, K.D. (1990) Crystal structures of natural ternary apatites: solid solution in the Ca5(PO4)3X (X = F, OH, Cl) system. American Mineralogist, 75, 295–304.Google Scholar

  • Hughes, J.M., Nekvasil, H., Ustunisik, G., Lindsley, D.H., Coraor, A.E., Vaughn, J., Phillips, B.L., McCubbin, F.M., and Woerner, W.R. (2014) Solid solution in the fluorapatite-chlorapatite binary system: High-precision crystal structure refinements of synthetic F-Cl apatite. American Mineralogist, 99, 369–376.Google Scholar

  • Lim, S.C., Baikie, T., Pramana, S.S., Smith, R., and White, T.J. (2011) Apatite metaprism twin angle (φ) as a tool for crystallochemical diagnosis. Journal of Solid State Chemistry, 184, 2978–2986.Google Scholar

  • Liu, J., Huang, X., Liu, J., Wang, W., Zhang, F., and Dong, F. (2014) Experimental and model studies on comparisono of As(III and V) removal from synthetic acid mine drainage by bone char. Mineralogical Magazine, 78, 73–89.Google Scholar

  • Magalhães, M.C.F., and Williams, P.A. (2007) Apatite group minerals: solubility and environmental remediation. In T.M. Letcher, Ed., Thermodynamics, Solubility and Environmental Issues, pp. 327–342. Elsevier, New York.Google Scholar

  • Magnusson, N.H. (1929) The Nordmark ore district. Sveriges Geologiska Undersökning, Ca 13, 98 p. (in Swedish).Google Scholar

  • Pasero, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J., and White, T.J. (2010) Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 22, 163–179.Google Scholar

  • Pouchou, J.L., and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In K.F.J. Heinrich and D.E. Newbury, Eds., Electron Probe Quantitation, p. 31–75. Plenum Press, New York.Google Scholar

  • Rakovan, J.F., and Pasteris, G.D. (2015) A technological gem: Materials, medical, and environmental mineralogy of apatite. Elements, 11, 195–200.Google Scholar

  • Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 3–8.Google Scholar

  • Wang, K.L., Zhang, Y., and Naab, F.U. (2011) Calibration for IR measurements of OH in apatite. American Mineralogist, 96, 1392–1397.Google Scholar

  • Wardojo, T.A., and Hwu, S.J. (1996) Chlorapatite: Ca5(AsO4)3Cl. Acta Crystallographica, C52, 2959–2960.Google Scholar

  • White, T.J., and Dong, Z. (2003) Structural derivation and crystal chemistry of apatites. Acta Crystallographica, B59, 1–16.Google Scholar

  • White, T., Ferraris, C., Kim, J., and Madhavi, S. (2005) Apatite—An adaptive framework structure. In G. Ferraris and S. Merlino, Eds., Micro- and Mesoporous Mineral Phases, 57, p. 307–401, Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.Google Scholar

  • Wilson, A.J.C. (1992) International Tables for Crystallography Volume C. Kluwer, Dordrecht.Google Scholar

About the article

Received: 2016-12-03

Accepted: 2017-06-07

Published Online: 2017-10-02

Published in Print: 2017-10-26


Citation Information: American Mineralogist, Volume 102, Issue 10, Pages 1981–1986, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-6041.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in