Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 102, Issue 10


A shallow origin of so-called ultrahigh-pressure chromitites, based on single-crystal X-ray structure analysis of the high-pressure Mg2Cr2O5 phase, with modified ludwigite-type structure

Takayuki Ishii
  • Corresponding author
  • Department of Chemistry, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
  • Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Noriyoshi Tsujino
  • Institute for Study of the Earth’s Interior, Okayama University, Misasa, Tottori 682-0193, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hidekazu Arii / Kiyoshi Fujino / Nobuyoshi Miyajima / Hiroshi Kojitani / Takehiro Kunimoto / Masaki Akaogi
Published Online: 2017-10-02 | DOI: https://doi.org/10.2138/am-2017-6050


The crystal structure of the high-pressure Mg2Cr2O5 phase was studied by single-crystal X-ray diffraction (XRD) analysis for the recovered samples. The 61 parameters including anisotropic displacement parameters of each atom and site occupancies of Mg and Cr in cation sites were refined with R1 = 1.26%, wR2 = 4.33%, and Sfit = 1.265 for 470 unique reflections. The results show that the structure of the recovered Mg2Cr2O5 phase is the same as modified ludwigite (mLd)-type Mg2Al2O5 [space group: Pbam (no. 55)], and the lattice parameters are a = 9.6091(2), b = 12.4324(2), c = 2.8498(1) Å (Z = 4). The refined structure of the Mg2Cr2O5 phase has four (Mg,Cr)O6 octahedral sites and a MgO6 trigonal prism site, and is similar to but distinct from that of CaFe3O5-type Mg2Fe2O5 phase, which has two octahedral sites and a bicapped trigonal prism site with two longer cation-oxygen bonds. The isotropic atomic displacement parameter of the trigonal prism site cation in mLd-type Mg2Cr2O5 is relatively small compared with that of CaFe3O5-type Mg2Fe2O5, suggesting that the trigonal prism site is less flexible for cation substitution than that of CaFe3O5-type structure. To stabilize mLd-type A22+B23+O5 phase, it would be an important factor for the B3+ cation to have high octahedral-site preference, resulting in only A2+ cation being accommodated in the tight trigonal prism site. Our study also suggests that mLd-type phase with (Mg,Fe2+)2Cr2O5 composition would crystallize as one of decomposed phases of chromitites, when the chromitites were possibly subducted into the mantle transition zone.

Keywords: Single-crystal structure analysis; high pressure; modified ludwigite structure; chromite; Mg2Cr2O5

References cited

  • Akaogi, M., Ito, E., and Navrotsky, A. (1989) Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application. Journal of Geophysical Research: Solid Earth, 94, 15671–15685.Google Scholar

  • Bindi, L., Sirotkina, E., Bobrov, A.V., and Irifune, T. (2015) Structural and chemical characterization of Mg[(Cr,Mg)(Si,Mg)]O4, a new post-spinel phase with sixfold-coordinated silicon. American Mineralogist, 100, 1633–1636.Google Scholar

  • Bindi, L., Sirotkina, E.A., Bobrov, A.V., Nestola, F., and Irifune, T. (2016) Chromium solubility in anhydrous Phase B. Physics and Chemistry of Minerals, 43, 103–110, .CrossrefGoogle Scholar

  • Boffa Ballaran, T., Uenver-Thiele, L., and Woodland, A.B. (2015) Complete substitution of Fe2+ by Mg in Fe4O5: The crystal structure of the Mg2Fe2O5 end-member. American Mineralogist, 100, 628–632.Google Scholar

  • Dobrzhinetskaya, L., Wirth, R., Yang, J.-S., Hutcheon, I., Weber, P., and Green, H.W. (2009) High pressure highly reduced nitride sand oxides from chromite of a Tibetan ophiolite. Proceedings of the National Academy of Sciences, 106, 19233–19238.Google Scholar

  • Enomoto, A., Kojitani, H., Akaogi, M., and Yusa, H. (2009) High-pressure transitions in MgAl2O4 and a new high-pressure phase of Mg2Al2O5. Journal of Solid State Chemistry, 182, 389–395, .CrossrefGoogle Scholar

  • Evrard, O., Malaman, B., Jeannot, F., Courtois, A., Alebouyeh, H., and Gerardin, R. (1980) Mise en évidence de CaF2e4O6 et détermination des structures cristallines des ferrites de calcium CaFe2+nO4+n(n = 1, 2, 3): nouvel exemple d’intercroissance. Journal of Solid State Chemistry, 35, 112–119.Google Scholar

  • Farrugia, L.J. (2012) WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 45, 849–854.Google Scholar

  • Frost, D.J., and McCammon, C.A. (2008) The redox state of Earth’s mantle. Annual Review of Earth and Planetary Sciences, 36, 389–420.Google Scholar

  • Ishii, T., Kojitani, H., Tsukamoto, S., Fujino, K., Mori, D., Inaguma, Y., Tsujino, N., Yoshino, T., Yamazaki, D., Higo, Y., Funakoshi, K., and Akaogi, M. (2014) High-pressure phase transitions in FeCr2O4 and structure analysis of new post-spinel FeCr2O4 and Fe2Cr2O5 phases with meteoritical and petrological implications. American Mineralogist, 99, 1788–1797.Google Scholar

  • Ishii, T., Kojitani, H., Fujino, K., Yusa, H., Mori, D., Inaguma, Y., Matsushita, Y., Yamaura, K., and Akaogi, M. (2015) High-pressure high-temperature transitions in MgCr2O4 and crystal structures of new Mg2Cr2O5 and post-spinel MgCr2O4 phases with implications for ultra-high pressure chromitites in ophiolites. American Mineralogist, 100, 59–65.Google Scholar

  • Lavina, B., Dera, P., Kim, E., Meng, Y., Downs, R.T., Weck, P.F., Sutton, S.R., and Zhao, Y. (2011) Discovery of the recoverable high-pressure iron oxide Fe4O5. Proceedings of the National Academy of Sciences, 108, 17,281–17,275, .CrossrefGoogle Scholar

  • O’Neill, H.St.C., and Navrotsky, A. (1984) Cation distributions and thermodynamic properties of binary spinel solid solutions. American Mineralogist, 69, 733–753.Google Scholar

  • Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.Google Scholar

  • Sheldrick, G.M. (1996) SADABS. Program for empirical absorption correction of area detector data. Institut für Anorganische Chemie, University of Göttingen, Germany.Google Scholar

  • Sheldrick, G.M. (1997) SHELX-97 (computer program). University of Göttingen, Germany.Google Scholar

  • Siersch, N.C., Ballaran, T.B., Uenver-Thiele, L., and Woodland, A.B. (2017) Compressibility and high-pressure structural behavior of Mg2Fe2O5. American Mineralogist, 102, 845–850.Google Scholar

  • Wilson, A.J.C., Ed. (1992) International Tables for Crystallography, vol. C. Kluwer, Dodrecht.Google Scholar

  • Yamamoto, S., Kojima, T., Hirose, K., and Maruyama, S. (2009) Coesite and clinopyroxene exsolution lamella in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos, 109, 314–322.Google Scholar

  • Yang, J.S., Dobrzhinetskaya, L., Bai, W.J., Fang, Q.S., Robinson, P.T., Zhang, J., and Green, H.W. (2007) Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology, 35, 875–878, .CrossrefGoogle Scholar

About the article

Received: 2016-12-07

Accepted: 2017-06-27

Published Online: 2017-10-02

Published in Print: 2017-10-26

Citation Information: American Mineralogist, Volume 102, Issue 10, Pages 2113–2118, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-6050.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in