Jump to ContentJump to Main Navigation
Show Summary Details
More options …

American Mineralogist

Journal of Earth and Planetary Materials

Ed. by Baker, Don / Xu, Hongwu / Swainson, Ian

IMPACT FACTOR 2018: 2.631

CiteScore 2018: 2.55

SCImago Journal Rank (SJR) 2018: 1.355
Source Normalized Impact per Paper (SNIP) 2018: 1.103

See all formats and pricing
More options …
Volume 102, Issue 10


Biologically mediated crystallization of buddingtonite in the Paleoproterozoic: Organic-igneous interactions from the Volyn pegmatite, Ukraine

Gerhard Franz
  • Corresponding author
  • Fachgebiet Mineralogie-Petrologie, Technische Universität Berlin, Ackerstr. 76, D-13355 Berlin, FR Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimir Khomenko
  • The National Academy of Sciences, Semenenko Institute of Geochemistry, Mineralogy and Ore Formation, 34, Palladina av., Kyiv-142, 03680, Ukraine
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aleksei Vishnyevskyy
  • The National Academy of Sciences, Semenenko Institute of Geochemistry, Mineralogy and Ore Formation, 34, Palladina av., Kyiv-142, 03680, Ukraine
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Richard Wirth
  • Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Sektion 3.1, Telegrafenberg, D-14473 Potsdam, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ulrich Struck
  • Museum für Naturkunde, Leibniz-Institut für Evolutions-und Biodiversitätsforschung, Invalidenstrasse 43, D-10115 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jörg Nissen
  • ZE Elektronenmikroskopie, Technische Universität Berlin, Strasse des 17, Juni 135, D-10623 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ulrich Gernert
  • ZE Elektronenmikroskopie, Technische Universität Berlin, Strasse des 17, Juni 135, D-10623 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander Rocholl
  • Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Sektion 3.1, Telegrafenberg, D-14473 Potsdam, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-02 | DOI: https://doi.org/10.2138/am-2017-6055


The Volyn pegmatites from Volodarsk-Volynskyi in the Zhytomyr Oblast, NW Ukraine, are associated with granites genetically related to the Paleoproterozoic Korosten pluton. Their late-stage evolution is characterized by the formation of opal-cemented breccia. A polymineralic pseudomorph after beryl within the breccia includes bertrandite (±euclase) + F-muscovite (with tobelite component) + buddingtonite + organic matter (OM) + opal (+ traces of K-feldspar, albite, columbite, FeS2, barite, REE-minerals). Sector-zoned and platy to fibrous buddingtonite has variable (K+Na)-vs. NH4,-contents (electron microprobe analyses) and some H2O or H3O+, as indicated by microscope infrared spectroscopy. We suggest that ammonium was produced by decay of OM, which is partly preserved in the pseudomorph. Energy-dispersive electron microprobe data of the OM show with increasing O–decreasing C-N-content due to degassing; the OM contains the high field strength elements Zr (≤7 at%), Y (≤3 at%), Sc (≤0.8 at%), REE (≤0.3 at%), Th (≤0.2 at%), and U (≤1.25 at%), which increase with increasing O-content. Transmission electron microscopy of the OM confirms the presence of N; Zr, Si, and O (with other HFSE) are concentrated in nanometer-sized areas and at the transition from OM to opal in nanometer-sized platy Zr-Si-O crystals. C-rich areas are amorphous but show poorly developed lattice fringes. OM is present in the pseudomorph also as brown pigmentation of opal and in pegmatitic beryl from Volyn as a component in late stage fluid inclusions, identified by C-H vibrational bands in infrared spectra. Stable isotope investigations of C and N of buddingtonite, black opal and kerite (fibrous OM known from the literature to occur in the Volyn pegmatites and interpreted as microfossils) indicate a biogenic origin of the OM. We propose that OM in the pseudomorph is condensed kerite, which achieved the high concentrations of high field strength elements via fluid-pegmatite interaction. Although no age determination of minerals in the pseudomorph is available, textural arguments and phase equilibria indicate its formation in a late stage of the pegmatite evolution, at P-T conditions below ~100 MPa/150 °C. We favor a conceptual model for the formation of the Volyn buddingtonite in analogy to Phanerozoic occurrences of buddingtonite, where over and around the shallow anorthosite-granite Korosten pluton hydrothermal convection cells introduced N-bearing hydrocarbons and its precursors into the cooling igneous rocks. Due to the elevated temperature, the OM disintegrated into degassing volatile and non-volatile residual components analogous to petroleum maturation. Organic N, released as NH4, was then incorporated into buddingtonite.

Keywords: Buddingtonite; tobelite; kerite; organic matter; Volodarsk-Volynskyi pegmatite field

References cited

  • Altaner, S.R., Fitzpatrick, J.J., Krohn, M.D., Bethke, P.M., Hayba, D.O., Goss, J.A., and Brown, Z.A. (1988) Ammonium in alunites. American Mineralogist, 73, 145–152.Google Scholar

  • Barker, D.S. (1964) Ammonium in alkali feldspars. American Mineralogist, 49, 851–858.Google Scholar

  • Barton, M.D., and Young, S. (2002) Non-pegmatitic deposits of beryllium: Mineralogy, geology, phase equilibria and origin. Reviews in Mineralogy and Geochemistry, 50, 591–691.Google Scholar

  • Bartoshinskiy, Z.V., Matkovskiy, O.I., and Srebrodolskiy, B.I. (1969) Accessory beryl from chamber pegmatites of Ukraine. Mineralogicheskiy Sbornik, 23, N4, 382–397 (in Russian).Google Scholar

  • Bobos, I., and Eberl, D.D. (2013) Thickness distributions and evolution of growth mechanisms of NH4-illite from the fossil hydrothermal system of Harghita Bãi, eastern Carpathians, Romania. Clays and Clay Minerals, 61, 375–391.Google Scholar

  • Busigny, V., and Bebout, G.E. (2013) Nitrogen in the silicate earth: Speciation and isotopic behavior during mineral-fluid interactions. Elements, 9, 353–358.Google Scholar

  • Černý, P. (1968) Beryllumwandlungen in Pegmatiten. Neues Jahrbuch Mineralogie, Abhandlungen, 108, 166–180.Google Scholar

  • Černý, P. (2002) Mineralogy of beryllium in granitic pegmatites. Reviews in Mineralogy and Geochemistry, 50, 405–444.Google Scholar

  • Černý, P., and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. Canadian Mineralogist, 43, 2005–2026.Google Scholar

  • Černý, P., London, D., and Novak, M. (2012) Granitic pegmatites as reflections of their sources. Elements, 8, 289–294.Google Scholar

  • Cook, N.J., Ciobanu, C.L., O’Rielly, D., Wilson, R., Das, K., and Wade, B. (2013) Mineral chemistry of rare earth elements (REE) mineralization, Browns Ranges, Western Australia. Lithos, 172–173, 192–213.Google Scholar

  • Gigashvili, G.M., and Kalyuzhnyi, V.A. (1969) Black opals from Volynian pegmatites, containing organic matter. Doklady Akademii Nauk SSSR, 186, 1154–1157 (in Russian).Google Scholar

  • Ginzburg, A.I., Bulgakov, V.S., Vasilishin, I.S., Luk’yanova, V.T., Solntseva, L.S., Urmenova, A.M., and Uspenskaya, V.A. (1987) Kerite from pegmatites of Volyn. Doklady Akademii Nauk SSSR, 292, 188–191 (in Russian).Google Scholar

  • Gorlenko, V.M., Zhmur, S.I., Duda, V.I., Osipov, G.A., Suzina, N.E., and Dmitriev, V. V. (2000) Fine structure of fossilized bacteria in Volyn kerite. Origin of Life and Evolution of the Biosphere, 30, 567–577.Google Scholar

  • Grew, E.S., and Hazen, R.M. (2014) Beryllium mineral evolution. American Mineralogist, 99, 999–1021.Google Scholar

  • Gysi, A., and William-Jones, A.E. (2013) Hydrothermal mobilization of pegmatitehosted REE and Zr at Strange Lake, Canada: A reaction path model. Geochimica et Cosmochimica Acta, 122, 324–352.Google Scholar

  • Hall, A. (1988) Crustal contamination of minette magmas: evidence from their ammonium contents. Neues Jahrbuch für Mineralogie Monatshefte, 137–143.Google Scholar

  • Harlov, D.E., Andrut, M., and Pöter, B. (2001a) Characterisation of buddingtonite (NH4)[AlSi3O8] and ND4-buddingtonite (ND4)[AlSi3O8] using IR spectroscopy and Rietveld refinement of XRD spectra. Physics and Chemistry of Minerals, 28, 188–198.Google Scholar

  • Harlov, D.E., Andrut, M., and Pöter, B. (2001b) Characterisation of tobelite (NH4)Al2(AlSi3O10(OH)2 and ND4-tobelite (ND)4Al2(AlSi3O10(OD)2 using IR spectroscopy and Rietveld refinement of XRD spectra. Physics and Chemistry of Minerals, 28, 268–276.Google Scholar

  • Hazen, B.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.J., Sverjensky, D.A., and Yang, H. (2008) Mineral evolution. American Mineralogist, 93, 1693–1720.Google Scholar

  • Hemley, J.J., and Jones, W.R. (1964) Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism. Economic Geology, 59, 538–569.Google Scholar

  • Holloway, J.M., and Dahlgren, R.A. (2002) Nitrogen in rock: Occurrences and biogeochemical implications. Global Geochemical Cycles, 16, .CrossrefGoogle Scholar

  • Ivanovich, P.V., and Alekseevich, D.S. (2007) Mineralogy of the Volynian chamber pegmatites. EKOST Association, Mineralogical Almanac, 12, 128 p, Moscow.Google Scholar

  • Kalyuzhnyi, V.A. (1982) The Basis of Teaching About Mineral Forming Fluids. Naukova Dumka, Kyiv, 239 p. (in Ukrainian).Google Scholar

  • Kalyuzhnyi, V.A., and Prytula, Z.S. (1967) Study of structural, thermodynamic and geochemical conditions of camera pegmatites’ deep fluids activities. In Study of Geochemistry of Deep Fluids Using Carbonaceous Relics and Paragenetic Minerals. Geologiya i Geohimiya Goryuchih Poleznyh Iskopaemyh, 9, 33–54 (in Russian).Google Scholar

  • Kalyuzhnyi, V.A., Voznyak, D.K., and Gigashvili, G.M. (1971) Mineral forming fluids and mineral paragenesis of chamber pegmatites of Ukraine. Naukova Dumka, Kyiv, 216 p. (in Ukrainian).Google Scholar

  • Koshil, I.M., Vasilishin, I.S., Pavlishin, V.I., and Panchenko, V.I. (1991) Wolodarsk-Wolynskii Geologischer Aufbau und Mineralogie der Pegmatite in Wolynien, Ukraine. Lapis, 10, 28–41.Google Scholar

  • Krohn, M.D., Kendall, C., Evans, J.R., and Fries, T.L. (1993) Relations of ammonium minerals at several hydrothermal systems in the western U.S. Journal of Volcanology and Geothermal Research, 56, 401–413.Google Scholar

  • Laricheva, O.O., Akhmanova, M.V., and Byvhkov, A.M. (1993) Low-temperature hydrothermal synthesis of buddingtonite. Geochemistry International, 30, 126–132.Google Scholar

  • Lazarenko, E.K., Matkovskii, O.I., Pavlishin, V.I., and Sorokin, Ju.G. (1967) New data on morphology and mineralogy of Volyn pegmatites. Doklady AN SSSR, 176, N1 (in Russian).Google Scholar

  • Lazarenko, E.K., Pavlishin, V.I., Latysh, V.T., and Sorokin, Ju.G. (1973) Mineralogy and genesis of the chamber pegmatites of Volyn. Lvov, Vysshaja shkola, 360 p (in Russian).Google Scholar

  • Levin, L.A., and Michener, R. (2002) Isotopic evidence of chemosynthesis-based nutrition of macrobenthos: The lightness of being at Pacific methane seeps. Limnology and Oceanography, 47, 1336–1345.Google Scholar

  • Lollar, B.S., Frape, S.K., Fritz, P., Macko, S.A., Welhan, J.A., Blomquist, R., and Lahermo, P.W. (1993) Evidence for bacterially generated hydrocarbon gas in Canadian Shield and Fennoscandian Shield rocks. Geochimica et Cosmochimica Acta, 57, 5073–5085.Google Scholar

  • Lollar, B.S., Lacrampe-Couloume, G., Slater, G.F., Ward, J., Moser, D.P., Gihring, T.M., Lin, L.-H., and Onstott, T.C. (2006) Unravelling abiogenic and biogenic sources of methane in the Earth’s deep subsurface. Chemical Geology, 226, 328–339.Google Scholar

  • London, D. (2008) Pegmatites. Canadian Mineralogist, Special Publications 10, p. 347; Québec, Canada.Google Scholar

  • London, D. (2013) Crystal-filled cavities in granitic pegmatites. Rocks and Minerals, 88, 527–534.Google Scholar

  • Lu’kyanova, V.T., Lobzova, R.V., and Popov, V.T. (1992) Filaceous kerite in pegmatites of Volyn. Izvestiya Ross. Akademii Nauk Ser. Geologicheskaya, 5, 102–118 (in Russian).Google Scholar

  • Lyckberg, P. (2005) Gem beryl from Russia and Ukraine. In D.J. Mossman, Ed., Beryl and its Color Varieties. Lapis Intl., L.L.C., East Hampton, Connecticut, U.S.A., 49–57.Google Scholar

  • Lyckberg, P., Chornousenko, V., and Wilson, W.E. (2009) Famous mineral localities: Volodarsk-Volynski, Zhitomir Oblast, Ukraine. The Mineralogical Record, 40, 473–506.Google Scholar

  • Mäder, U.K., Ramseyer, K., Daniels, E.J., and Althaus, E. (1996) Gibbs free energy of buddingtonite (NH4AlSi3O8) extrapolated from experiments and comparison to natural occurrences and polyhedral estimation. European Journal of Mineralogy, 8, 755–766.Google Scholar

  • Mariotti, A. (1983) Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature, 303, 685–687.Google Scholar

  • Nieto, F. (2005) Characterization of coexisting NH4- and K-micas in very low-grade metapelites. American Mineralogist, 87, 205–216.Google Scholar

  • Orlov, N.A., and Uspenskii, V.A. (1936) Mineralogy of caustobioliths. Moscow: Akademiya Nauk SSSR (in Russian; not seen, extracted from Zhmur 2003).Google Scholar

  • Peterson, B.J., and Fry, B. (1987) Stable isotopes in ecosystem studies. Annual Reviews of Ecological Systems, 18, 293–320.Google Scholar

  • Pöter, B., Gottschalk, M., and Heinrich, W. (2007) Crystal-chemistry of synthetic K-feldspar-buddingtonite and muscovite-tobelite solid solutions. American Mineralogist, 92, 151–165.Google Scholar

  • Proshko, V.Ya., Bagmut, N.N., Vasilishin, I.S., and Panchenko, V.I. (1987) Ammonium feldspars from Volyn pegmatites and their radiospectroscopic properties. Mineralogical Journal (Ukraine), 9, 67–71 (in Russian).Google Scholar

  • Ramseyer, K., Diamond, L.W., and Boles, J.R. (1993) Authigenic K-NH4-feldspar in sandstones: A fingerprint of the diagenesis of organic matter. Journal of Sedimentary Petrology, 63, 1092–1099.Google Scholar

  • Rau, G.H., Teyssie, J.L., Tassoulzadegan, R., and Rowler, S.W. (1990) 13C/12C and 15N/14N variations among size-fractionated marine particles: Implication for their origin and trophic relationships. Marine Ecology Progress Series, 59, 33–38.Google Scholar

  • Rau, G.H., Riebesell, U., and Wolf-Gladrow, D.A. (1996) A model of photosynthetic 13C fractionation by marine phytoplankton based on diffusive molecular CO2 uptake. Marine Ecology Progress Series, 133, 275–285.Google Scholar

  • Schilling, J., Bingen, B., Øyvind, S., Wenzel, T., and Markl, G. (2015) Formation and evolution of the Høgtuva beryllium deposit, Norway. Contributions to Mineralogy and Petrology, 170, 30, .CrossrefGoogle Scholar

  • Simmons, W.B. (2014) Gem-bearing pegmatites. In L.E. Groat, Ed., Geology of Gem Deposits. Mineralogical Association of Canada Short Course Series, 44, 257–304.Google Scholar

  • Struck, U. (2012) On the use of stable nitrogen isotopes in present and past anoxic environments. In A.V. Altenbach, J.M. Bernard, and J. Seckbach, Eds., Anoxia, Evidence for Eukaryote Survival and Paleontological Strategies. Book series: Cellular Origin, Life in Extreme Habitats and Astrobiology, 21, 497–513, Springer, Berlin.Google Scholar

  • Svensen, H., Aarnes, I., Podlachikov, Y.Y., Jettestuen, E., Harstadt, C.H., and Planke, S. (2010) Sandstone dikes in dolerite sills: Evidence for high-pressure gradients and sediment mobilization during solidification in magmatic sheet intrusions in sedimentary basins. Geosphere, 6, 211–224.Google Scholar

  • Verkhoglyad, V.M. (1995) Age stages of magmatism of Korosten pluton. Geochimiya i Rudoobrazovanie, 21, 34–47 (in Russian).Google Scholar

  • Voznyak, D.K., Khomenko, V.M., Franz, G., and Wiedenbeck, M. (2012) Physic-chemical conditions of the late stage of Volyn pegmatite evolution: Fluid inclusions in beryl studied by thermobarometry and IR-spectroscopy methods. Mineralogical Journal (Ukraine), 34, 26–38 (in Ukrainian).Google Scholar

  • Wintsch, R.P. (1975) Solid-fluid equilibria in the system KAlSi3O8-NaAlSi3O8-Al2SiO5-SiO2-H2O-HCl. Journal of Petrology, 16, 57–79.Google Scholar

  • Wirth, R. (2004) Focused ion beam (FIB): A novel technology for advanced application of micro-and nanoanalysis in geosciences and applied mineralogy. European Journal Mineralogy, 16, 863–876.Google Scholar

  • Wirth, R. (2009) Focused ion beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chemical Geology, 261, 217–229.Google Scholar

  • Zhmur, S.I. (2003) Origin of Cambrian fibrous kerite of the Volyn region. Lithology and Mineral Resources, 38, 55–73.Google Scholar

About the article

Received: 2016-12-12

Accepted: 2017-06-07

Published Online: 2017-10-02

Published in Print: 2017-10-26

Citation Information: American Mineralogist, Volume 102, Issue 10, Pages 2119–2135, ISSN (Online) 1945-3027, ISSN (Print) 0003-004X, DOI: https://doi.org/10.2138/am-2017-6055.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.

Comments (0)

Please log in or register to comment.
Log in